Polarization rotation and singularity evolution of fundamental Poincare beams through anisotropic Kerr nonlinearities

被引:8
作者
Wen, Bo [1 ]
Rui, Guanghao [1 ]
He, Jun [2 ]
Cui, Yiping [1 ]
Gu, Bing [1 ,3 ]
机构
[1] Southeast Univ, Adv Photon Ctr, Nanjing 210096, Jiangsu, Peoples R China
[2] Cent South Univ, Sch Phys & Elect, Changsha 410012, Peoples R China
[3] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Jinan 250358, Peoples R China
基金
中国国家自然科学基金;
关键词
polarization; singularity; Kerr nonlinearities; 2-PHOTON ABSORBERS; GENERATION;
D O I
10.1088/2040-8986/ab9aae
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a theoretical investigation on polarization rotation and singularity evolution of focused fundamental Poincare beams in free-space propagation and through isotropic and anisotropic Kerr nonlinear media. It is found that the optical nonlinearity enhances the polarization rotation of the focused beams during propagation. Furthermore, the anisotropy of optical nonlinearity causes the symmetry breaking of the polarization distribution. Further studies show that the C-point and L-line singularities of the lemon Poincare beams do not change while propagating in free space or through the isotropic nonlinear Kerr medium. Interestingly, the anisotropic Kerr nonlinearity evokes the C-point singularity splitting, and the distortion and birth of L-line singularities. However, the total singularity index always remains the conservation within the light field, regardless of the optical nonlinearity.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Full Poincare beams [J].
Beckley, Amber M. ;
Brown, Thomas G. ;
Alonso, Miguel A. .
OPTICS EXPRESS, 2010, 18 (10) :10777-10785
[2]   Polarization Shaping for Control of Nonlinear Propagation [J].
Bouchard, Frederic ;
Larocque, Hugo ;
Yao, Alison M. ;
Travis, Christopher ;
De Leon, Israel ;
Rubano, Andrea ;
Karimi, Ebrahim ;
Oppo, Gian-Luca ;
Boyd, Robert W. .
PHYSICAL REVIEW LETTERS, 2016, 117 (23)
[3]   Generation and dynamics of optical beams with polarization singularities [J].
Cardano, Filippo ;
Karimi, Ebrahim ;
Marrucci, Lorenzo ;
de Lisio, Corrado ;
Santamato, Enrico .
OPTICS EXPRESS, 2013, 21 (07) :8815-8820
[4]   Vectorial optical fields: recent advances and future prospects [J].
Chen, Jian ;
Wan, Chenhao ;
Zhan, Qiwen .
SCIENCE BULLETIN, 2018, 63 (01) :54-74
[5]   Polarization singularities from unfolding an optical vortex through a birefringent crystal [J].
Flossmann, F ;
Schwarz, UT ;
Maier, M ;
Dennis, MR .
PHYSICAL REVIEW LETTERS, 2005, 95 (25)
[6]   Polarization singularity indices in Gaussian laser beams [J].
Freund, I .
OPTICS COMMUNICATIONS, 2002, 201 (4-6) :251-270
[7]   Control of polarization rotation in nonlinear propagation of fully structured light [J].
Gibson, Christopher J. ;
Bevington, Patrick ;
Oppo, Gian-Luca ;
Yao, Alison M. .
PHYSICAL REVIEW A, 2018, 97 (03)
[8]   Large enhancement of optical limiting effects in anisotropic two-photon absorbers by radially polarized beam [J].
Gu, Bing ;
Rui, Guanghao ;
Xue, Yuxiong ;
He, Jun ;
Cui, Yiping .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (12) :2512-2517
[9]   Nonlinear polarization evolution of hybridly polarized vector beams through isotropic Kerr nonlinearities [J].
Gu, Bing ;
Wen, Bo ;
Rui, Guanghao ;
Xue, Yuxiong ;
He, Jun ;
Zhan, Qiwen ;
Cui, Yiping .
OPTICS EXPRESS, 2016, 24 (22) :25867-25875
[10]   Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media [J].
Gu, Bing ;
Wen, Bo ;
Rui, Guanghao ;
Xue, Yuxiong ;
Zhan, Qiwen ;
Cui, Yiping .
OPTICS LETTERS, 2016, 41 (07) :1566-1569