Hand Pose Estimation on Hybrid CNN-AE Model

被引:0
作者
Fang, Xingtai [1 ]
Lei, Xiaoyong [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017) | 2017年
关键词
hand pose estimation; convolutional neural network; auto-encoder;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automatic hand detection and accurate hand pose estimation from depth data in real system are challenging and vital tasks for human-computer interaction. In this paper, we introduce a Convolutional Neural Network (CNN) as Deep learning regression framework while employing an embedding denoising auto-encoder in the bottom layer of the network to learn latent representation of hand pose and account for joint dependencies. Our model is trained end-to-end and parameters are jointly fine-tuned via gradient descent algorithm. We verify our approach on two public hand pose datasets: NYU and ICVL datasets. Experimental results show that our method achieves competitive performance to the compared state-of-the-art methods.
引用
收藏
页码:1018 / 1022
页数:5
相关论文
共 15 条
  • [1] [Anonymous], 2016, COMPUTER SCI
  • [2] [Anonymous], 2016, IJCAI
  • [3] [Anonymous], 2011, BMVC
  • [4] [Anonymous], BRIT MACH VIS C
  • [5] [Anonymous], 2014, COMPUTER VISION PATT, DOI DOI 10.1109/CVPR.2014.145
  • [6] [Anonymous], 2016, P IEEE C COMP VIS PA
  • [7] Vision-based hand pose estimation: A review
    Erol, Ali
    Bebis, George
    Nicolescu, Mircea
    Boyle, Richard D.
    Twombly, Xander
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2007, 108 (1-2) : 52 - 73
  • [8] Melax Stan, 2013, Proceedings of the 2013 Graphics Interface Conference, P63
  • [9] Molchanov Pavlo, 2015, BIOMED SIGNAL PROCES, V18, P80
  • [10] Oberweger M., 2015, P IEEE INT C COMP VI