Enhanced Gas Adsorption on Graphitic Substrates via Defects and Local Curvature: A Density Functional Theory Study

被引:50
作者
Dutta, Debosruti [1 ]
Wood, Brandon C. [2 ,3 ]
Bhide, Shreyas Y. [1 ]
Ayappa, K. Ganapathy [1 ]
Narasimhan, Shobhana [2 ,4 ]
机构
[1] Indian Inst Sci, Dept Chem Engn, Bangalore 560012, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
[3] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA
[4] Jawaharlal Nehru Ctr Adv Sci Res, Sheikh Saqr Lab, Int Ctr Mat Sci, Bangalore 560064, Karnataka, India
基金
美国国家科学基金会;
关键词
HYDROGEN STORAGE; CARBON NANOTUBES; ACTIVATED CARBON; METHANE STORAGE; GRAPHENE; CO2; TEMPERATURE; MOLECULES; PROSPECTS; VACANCIES;
D O I
10.1021/jp411338a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.
引用
收藏
页码:7741 / 7750
页数:10
相关论文
共 80 条
[1]   Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface [J].
Allouche, A. ;
Ferro, Y. .
CARBON, 2006, 44 (15) :3320-3327
[2]   Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions [J].
Amft, Martin ;
Lebegue, Sebastien ;
Eriksson, Olle ;
Skorodumova, Natalia V. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (39)
[3]   Atomic resolution of defects in graphite studied by STM [J].
Atamny, F ;
Baiker, A ;
Schlogl, R .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1997, 358 (1-2) :344-348
[4]   On the imaging mechanism of monatomic steps in graphite [J].
Atamny, F ;
Fässler, TF ;
Baiker, A ;
Schlögl, R .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 71 (04) :441-447
[5]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[6]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[7]   High-pressure adsorption capacity and structure of CO2 in carbon slit pores:: Theory and simulation [J].
Bhatia, SK ;
Tran, K ;
Nguyen, TX ;
Nicholson, D .
LANGMUIR, 2004, 20 (22) :9612-9620
[8]   Macroscopic 3D Nanographene with Dynamically Tunable Bulk Properties [J].
Biener, Juergen ;
Dasgupta, Subho ;
Shao, Lihua ;
Wang, Di ;
Worsley, Marcus A. ;
Wittstock, Arne ;
Lee, Jonathan R. I. ;
Biener, Monika M. ;
Orme, Christine A. ;
Kucheyev, Sergei O. ;
Wood, Brandon C. ;
Willey, Trevor M. ;
Hamza, Alex V. ;
Weissmueller, Joerg ;
Hahn, Horst ;
Baumann, Theodore F. .
ADVANCED MATERIALS, 2012, 24 (37) :5083-5087
[9]   Advanced carbon aerogels for energy applications [J].
Biener, Juergen ;
Stadermann, Michael ;
Suss, Matthew ;
Worsley, Marcus A. ;
Biener, Monika M. ;
Rose, Klint A. ;
Baumann, Theodore F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :656-667
[10]  
Billemont P., 2013, ADSORPTION, P1