Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices

被引:85
作者
Lei, Junjun [1 ]
Hill, Martyn [1 ]
Glynne-Jones, Peter [1 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Southampton, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
ACOUSTOPHORESIS; MANIPULATION; VELOCITIES; PARTICLES;
D O I
10.1039/c3lc50985k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.
引用
收藏
页码:532 / 541
页数:10
相关论文
共 32 条
[1]   Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure [J].
Aktas, MK ;
Farouk, B .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 116 (05) :2822-2831
[2]   Measuring the local pressure amplitude in microchannel acoustophoresis [J].
Barnkob, Rune ;
Augustsson, Per ;
Laurell, Thomas ;
Bruus, Henrik .
LAB ON A CHIP, 2010, 10 (05) :563-570
[3]   Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation [J].
Bernassau, A. L. ;
Glynne-Jones, P. ;
Gesellchen, F. ;
Riehle, M. ;
Hill, M. ;
Cumming, D. R. S. .
ULTRASONICS, 2014, 54 (01) :268-274
[4]  
Boluriaan S., 2003, International Journal of Aeroacoustics, V2, P255, DOI 10.1260/147547203322986142
[5]   Acoustofluidics 7: The acoustic radiation force on small particles [J].
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (06) :1014-1021
[6]   A comparative analysis of the uncertainty of astigmatism-μPTV, stereo-μPIV, and μPIV [J].
Cierpka, C. ;
Rossi, M. ;
Segura, R. ;
Mastrangelo, F. ;
Kaehler, C. J. .
EXPERIMENTS IN FLUIDS, 2012, 52 (03) :605-615
[7]   On the calibration of astigmatism particle tracking velocimetry for microflows [J].
Cierpka, C. ;
Rossi, M. ;
Segura, R. ;
Kaehler, C. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (01)
[8]   A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics [J].
Cierpka, C. ;
Segura, R. ;
Hain, R. ;
Kaehler, C. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (04)
[9]   Surface acoustic wave microfluidics [J].
Ding, Xiaoyun ;
Li, Peng ;
Lin, Sz-Chin Steven ;
Stratton, Zackary S. ;
Nama, Nitesh ;
Guo, Feng ;
Slotcavage, Daniel ;
Mao, Xiaole ;
Shi, Jinjie ;
Costanzo, Francesco ;
Huang, Tony Jun .
LAB ON A CHIP, 2013, 13 (18) :3626-3649
[10]   VORTICES AND STREAMS CAUSED BY SOUND WAVES [J].
ECKART, C .
PHYSICAL REVIEW, 1948, 73 (01) :68-76