Tutorial on Cross-domain Recommender Systems

被引:24
|
作者
Cantador, Ivan [1 ]
Cremonesi, Paolo [2 ]
机构
[1] Univ Autonoma Madrid, Dept Ingn Informat, Madrid 28049, Spain
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14) | 2014年
关键词
Recommender Systems; Cross-Domain Recommendation; Cross-Selling; Knowledge Transfer; PERSONALIZATION;
D O I
10.1145/2645710.2645777
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommender systems aim to generate or enhance personalized recommendations in a target domain by exploiting knowledge (mainly user preferences) form other source domains. This may beneficial for generating better recommendations, e.g. mitigating the cold-start and sparsity problems in a target domain, and enabling personalized cross-selling for items from multiple domains. In this tutorial, we formalize the cross-domain recommendation problem, categorize and survey state of the art cross-domain recommender systems, discuss related evaluation issues, and outline future research directions on the topic.
引用
收藏
页码:401 / 402
页数:2
相关论文
共 50 条
  • [31] Tutorial on Fairness of Machine Learning in Recommender Systems
    Li, Yunqi
    Ge, Yingqiang
    Zhang, Yongfeng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2654 - 2657
  • [32] Tutorial: Data Denoising Metrics in Recommender Systems
    Wang, Pengfei
    Li, Chenliang
    Zou, Lixin
    Feng, Zhichao
    Li, Kaiyuan
    Li, Xiaochen
    Liu, Xialong
    Wang, Shangguang
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 5224 - 5227
  • [33] Psychology-informed Recommender Systems Tutorial
    Lex, Elisabeth
    Schedl, Markus
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 714 - 717
  • [34] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [35] A Cross-Domain Recommendation Model for Cyber-Physical Systems
    Gao, Sheng
    Luo, Hao
    Chen, Da
    Li, Shantao
    Gallinari, Patrick
    Ma, Zhanyu
    Guo, Jun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2013, 1 (02) : 384 - 393
  • [36] Knowledge-Reinforced Cross-Domain Recommendation
    Huang, Ling
    Huang, Xiao-Dong
    Zou, Han
    Gao, Yuefang
    Wang, Chang-Dong
    Yu, Philip S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [37] A Unified Framework for Cross-Domain and Cross-System Recommendations
    Zhu, Feng
    Wang, Yan
    Zhou, Jun
    Chen, Chaochao
    Li, Longfei
    Liu, Guanfeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1171 - 1184
  • [38] Efficient and adaptive secure cross-domain recommendations
    Liu, Hong
    He, Jian
    Xu, Zhu
    Zhang, Yushu
    Zhao, Zhiqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [39] Preliminary Investigation of Alleviating User Cold-Start Problem in E-commerce with Deep Cross-Domain Recommender System
    Wang, Hanxin
    Amagata, Daichi
    Maekawa, Takuya
    Hara, Takahiro
    Niu, Hao
    Yonekawa, Kei
    Kurokawa, Mori
    COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), 2019, : 398 - 403
  • [40] Exploiting Aesthetic Preference in Deep Cross Networks for Cross-domain Recommendation
    Liu, Jian
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Zhou, Xiaofang
    Xiong, Hui
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2768 - 2774