Tutorial on Cross-domain Recommender Systems

被引:24
|
作者
Cantador, Ivan [1 ]
Cremonesi, Paolo [2 ]
机构
[1] Univ Autonoma Madrid, Dept Ingn Informat, Madrid 28049, Spain
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14) | 2014年
关键词
Recommender Systems; Cross-Domain Recommendation; Cross-Selling; Knowledge Transfer; PERSONALIZATION;
D O I
10.1145/2645710.2645777
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommender systems aim to generate or enhance personalized recommendations in a target domain by exploiting knowledge (mainly user preferences) form other source domains. This may beneficial for generating better recommendations, e.g. mitigating the cold-start and sparsity problems in a target domain, and enabling personalized cross-selling for items from multiple domains. In this tutorial, we formalize the cross-domain recommendation problem, categorize and survey state of the art cross-domain recommender systems, discuss related evaluation issues, and outline future research directions on the topic.
引用
收藏
页码:401 / 402
页数:2
相关论文
共 50 条
  • [21] Tutorial on Social Recommender Systems
    Guy, Ido
    WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 195 - 195
  • [22] Provisioning a cross-domain recommender system using an adaptive adversarial network model
    M. Nanthini
    K. Pradeep Mohan Kumar
    Soft Computing, 2023, 27 : 19197 - 19212
  • [23] Adversarial Attacks for Black-Box Recommender Systems via Copying Transferable Cross-Domain User Profiles
    Fan, Wenqi
    Zhao, Xiangyu
    Li, Qing
    Derr, Tyler
    Ma, Yao
    Liu, Hui
    Wang, Jianping
    Tang, Jiliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12415 - 12429
  • [24] Provisioning a cross-domain recommender system using an adaptive adversarial network model
    Nanthini, M.
    Kumar, K. Pradeep Mohan
    SOFT COMPUTING, 2023, 27 (24) : 19197 - 19212
  • [25] Tutorial: Feature Engineering for Recommender Systems
    Deotte, Chris
    Schifferer, Benedikt
    Oldridge, Even
    RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 754 - 755
  • [26] A Deep Dual Adversarial Network for Cross-Domain Recommendation
    Zhang, Qian
    Liao, Wenhui
    Zhang, Guangquan
    Yuan, Bo
    Lu, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3266 - 3278
  • [27] Cross-Domain Recommendations with Overlapping Items
    Kotkov, Denis
    Wang, Shuaiqiang
    Veijalainen, Jari
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2 (WEBIST), 2016, : 131 - 138
  • [28] DADIN: Domain Adversarial Deep Interest Network for cross domain recommender systems
    Kong, Menglin
    Hou, Muzhou
    Zhao, Shaojie
    Liu, Feng
    Su, Ri
    Chen, Yinghao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 243
  • [29] Tutorial: Sequence-Aware Recommender Systems
    Quadrana, Massimo
    Jannach, Dietmar
    Cremonesi, Paolo
    COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), 2019, : 1316 - 1316
  • [30] Tutorial: Sequence-aware Recommender Systems
    Quadrana, Massimo
    Cremonesi, Paolo
    Jannach, Dietmar
    PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), 2018, : 373 - 374