Tutorial on Cross-domain Recommender Systems

被引:24
作者
Cantador, Ivan [1 ]
Cremonesi, Paolo [2 ]
机构
[1] Univ Autonoma Madrid, Dept Ingn Informat, Madrid 28049, Spain
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14) | 2014年
关键词
Recommender Systems; Cross-Domain Recommendation; Cross-Selling; Knowledge Transfer; PERSONALIZATION;
D O I
10.1145/2645710.2645777
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommender systems aim to generate or enhance personalized recommendations in a target domain by exploiting knowledge (mainly user preferences) form other source domains. This may beneficial for generating better recommendations, e.g. mitigating the cold-start and sparsity problems in a target domain, and enabling personalized cross-selling for items from multiple domains. In this tutorial, we formalize the cross-domain recommendation problem, categorize and survey state of the art cross-domain recommender systems, discuss related evaluation issues, and outline future research directions on the topic.
引用
收藏
页码:401 / 402
页数:2
相关论文
共 10 条
[1]   Cross-system user modeling and personalization on the Social Web [J].
Abel, Fabian ;
Herder, Eelco ;
Houben, Geert-Jan ;
Henze, Nicola ;
Krause, Daniel .
USER MODELING AND USER-ADAPTED INTERACTION, 2013, 23 (2-3) :169-209
[2]  
[Anonymous], 2012, P 2 SPAN C INF RETR
[3]   Mediation of user models for enhanced personalization in recommender systems [J].
Berkovsky, Shlomo ;
Kuflik, Tsvi ;
Ricci, Francesco .
USER MODELING AND USER-ADAPTED INTERACTION, 2008, 18 (03) :245-286
[4]  
Cremonesi P., 2011, 2011 IEEE International Conference on Data Mining Workshops, P496, DOI 10.1109/ICDMW.2011.57
[5]  
Li B, 2009, 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, P2052
[6]  
Pan WK, 2010, AAAI CONF ARTIF INTE, P230
[7]   Facebook single and cross domain data for recommendation systems [J].
Shapira, Bracha ;
Rokach, Lior ;
Freilikhman, Shirley .
USER MODELING AND USER-ADAPTED INTERACTION, 2013, 23 (2-3) :211-247
[8]  
Sheng Gao, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P161, DOI 10.1007/978-3-642-40991-2_11
[9]  
Shi Y, 2011, LECT NOTES COMPUT SC, V6787, P305, DOI 10.1007/978-3-642-22362-4_26
[10]  
Tiroshi A., 2013, Proceedings of the 7th ACM Conference on Recommender Systems, P319, DOI DOI 10.1145/2507157.2507206