rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment

被引:11
|
作者
Maugeais, Cyrille [1 ]
Annema, Wijtske [2 ,3 ]
Blum, Denise [1 ]
Mary, Jean-Luc [1 ]
Tietge, Uwe J. F. [2 ,3 ]
机构
[1] F Hoffmann La Roche Ltd pRED, Cardiovasc & Metab Dis, Basel, Switzerland
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Pediat, Groningen, Netherlands
[3] Top Inst Food & Nutr, Wageningen, Netherlands
关键词
HDL; Cholesterol; Reverse cholesterol transport; Sterol excretion; APOLIPOPROTEIN-A-I; SECRETORY PHOSPHOLIPASE A(2); RANDOMIZED CONTROLLED-TRIAL; ATHEROSCLEROSIS REGRESSION; CORONARY ATHEROSCLEROSIS; PLAQUE STABILIZATION; DEFICIENT MICE; HDL; ABSORPTION; EXPRESSION;
D O I
10.1016/j.atherosclerosis.2013.04.009
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Promoting reverse cholesterol transport (RCT) is a major atheroprotective property of HDL. The present study explored the effect of stimulating the first step of RCT (cholesterol efflux from macrophages) alone or in combination with stimulating the last step of RCT (fecal sterol excretion). Methods and results: Reconstituted HDL (rHDL) was injected into wild-type mice either with or without administration of the cholesterol absorption inhibitor ezetimibe or the bile acid sequestrant cholestyramine. Single dose administration of rHDL (100 mg apoA-I/kg) resulted in an early (4 h) increase in plasma free cholesterol levels (p < 0.001), without affecting hepatic cholesterol levels or fecal mass sterol excretion. rHDL injection also increased [H-3] cholesterol appearance in plasma at an early time-point (4 h) after intraperitoneal administration of [H-3] cholesterol-labeled mouse macrophage foam cells and fecal radioactivity excretion indicating completed RCT was increased by 26% (p < 0.05). Ezetimibe treatment inhibited intestinal cholesterol absorption by 74% (p < 0.01), but also the bile acid sequestrant cholestyramine decreased cholesterol absorption significantly (24%, p < 0.01). Consequently, ezetimibe increased RCT 2.1-fold (p < 0.001) primarily within fecal neutral sterols, while cholestyramine increased RCT by 3.6-fold (p < 0.001), primarily within bile acids (p < 0.001), but also within neutral sterols (p < 0.001). However, no additive effects of both intestinal sterol uptake inhibitors were observed on top of rHDL administration. Conclusion: These data demonstrate that increasing the first step of RCT by rHDL administration results in transient cholesterol mobilization from macrophages to plasma. This effect is not further enhanced by stimulating the last step of RCT, fecal sterol excretion. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [1] Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans
    Davidson, Michael H.
    Voogt, Jason
    Luchoomun, Jayraz
    Decaris, Julie
    Killion, Salena
    Boban, Drina
    Glass, Alexander
    Mohammad, Hussein
    Lu, Yun
    Villegas, Deona
    Neese, Richard
    Hellerstein, Marc
    Neff, David
    Musliner, Thomas
    Tomassini, Joanne E.
    Turner, Scott
    ATHEROSCLEROSIS, 2013, 230 (02) : 322 - 329
  • [2] Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice
    Meissner, Maxi
    Nijstad, Niels
    Kuipers, Folkert
    Tietge, Uwe J. F.
    NUTRITION & METABOLISM, 2010, 7
  • [3] Prednisolone increases enterohepatic cycling of bile acids by induction of Asbt and promotes reverse cholesterol transport
    Out, Carolien
    Dikkers, Arne
    Laskewitz, Anke
    Boverhof, Renze
    van der Ley, Claude
    Kema, Ido P.
    Wolters, Henk
    Havinga, Rick
    Verkade, Henkjan J.
    Kuipers, Folkert
    Tietge, Uwe J. F.
    Groen, Albert K.
    JOURNAL OF HEPATOLOGY, 2014, 61 (02) : 351 - 357
  • [4] Both the Peroxisome Proliferator-Activated Receptor δ Agonist, GW0742, and Ezetimibe Promote Reverse Cholesterol Transport in Mice by Reducing Intestinal Reabsorption of HDL-Derived Cholesterol
    Briand, Francois
    Naik, Snehal U.
    Fuki, Ilia
    Millar, John S.
    Macphee, Colin
    Walker, Max
    Billheimer, Jeffrey
    Rothblat, George
    Rader, Daniel J.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2009, 2 (02): : 127 - 133
  • [5] Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice
    Maxi Meissner
    Niels Nijstad
    Folkert Kuipers
    Uwe JF Tietge
    Nutrition & Metabolism, 7
  • [6] Antisense oligonucleotide-mediated inhibition of angiopoietin-like protein 3 increases reverse cholesterol transport in mice
    Bell, Thomas A., III
    Liu, Mingxia
    Donner, Aaron J.
    Lee, Richard G.
    Mullick, Adam E.
    Crooke, Rosanne M.
    JOURNAL OF LIPID RESEARCH, 2021, 62
  • [7] Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice
    Samyn, Hannelore
    Moerland, Matthijs
    van Gent, Teus
    van Haperen, Rien
    Grosveld, Frank
    van Tol, Arie
    de Crom, Rini
    ATHEROSCLEROSIS, 2009, 204 (02) : 429 - 434
  • [8] Ezetimibe Enhances Macrophage Reverse Cholesterol Transport in Hamsters Independent of Transintestinal Cholesterol Efflux Pathway
    Komatsu, Tomohiro
    Ayaori, Makoto
    Uto-Kondo, Harumi
    Yogo, Makiko
    Sasaki, Makoto
    Takiguchi, Shunichi
    Yakushiji, Emi
    Ogura, Masatsune
    Endo, Yasuhiro
    Nakaya, Kazuhiro
    Ikewaki, Katsunori
    CIRCULATION, 2013, 128 (22)
  • [9] Targeting GGTase-I Activates RHOA, Increases Macrophage Reverse Cholesterol Transport, and Reduces Atherosclerosis in Mice
    Khan, Omar M.
    Akula, Murali K.
    Skalen, Kristina
    Karlsson, Christin
    Stahlman, Marcus
    Young, Stephen G.
    Boren, Jan
    Bergo, Martin O.
    CIRCULATION, 2013, 127 (07) : 782 - 790
  • [10] Aerobic Exercise Improves Reverse Cholesterol Transport in Cholesteryl Ester Transfer Protein Transgenic Mice
    Rocco, D. D. F. M.
    Okuda, L. S.
    Pinto, R. S.
    Ferreira, F. D.
    Kubo, S. K.
    Nakandakare, E. R.
    Quintao, E. C. R.
    Catanozi, S.
    Passarelli, M.
    LIPIDS, 2011, 46 (07) : 617 - 625