An oscillation theorem for second order superlinear dynamic equations on time scales

被引:11
作者
Jia Baoguo [1 ,2 ]
Erbe, Lynn [1 ]
Peterson, Allan [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Zhongshan Univ, Sch Math & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Oscillation; Superlinear; Dynamic equation;
D O I
10.1016/j.amc.2013.03.138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the oscillatory behavior of the second order superlinear dynamic equation (r(t)x(Delta)(t))(Delta) + p(t)x(alpha)(sigma(t)) = 0; alpha > 1, (0,1) is studied under the assumption integral(infinity) 1 Delta t/r(t) < infinity, where r; p is an element of C-rd(T, R), r(t) > 0; T in our main theorem is assumed to be a regular time scale, alpha is the quotient of odd positive integers. When the coefficient function p(t) is allowed to be negative for arbitrarily large values of t, we establish a sufficient condition for oscillation of all solutions of Eq. (0.1). As special cases, we get that the superlinear differential equation (r(t)x(')(t))(') + p(t)x(alpha)(t) = 0, alpha > 1 is oscillatory, if integral(infinity) R-alpha (t)p(t)dt = infinity, R(t) = integral(infinity)(t) ds/rds, and the superlinear difference equation Delta(r(n)Delta x(n))p(n)x(alpha) (n + 1) = 0; alpha > 1; is oscillatory, if Sigma(infinity) R-alpha (n + 1)p(n) = infinity; R(n) = Sigma(infinity)(k=n) 1/r(k). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10333 / 10342
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 2001, Dynamic equation on time scales. An introduction with applications
[2]  
[Anonymous], 2001, INTRO APPL
[3]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[4]   Belohorec-type oscillation theorem for second order sublinear dynamic equations on time scales [J].
Erbe, Lynn ;
Jia, Baoguo ;
Peterson, Allan .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (13) :1658-1668
[5]   Oscillation of second order superlinear dynamic equations with damping on time scales [J].
Hassan, Taher S. ;
Erbe, Lynn ;
Peterson, Allan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :550-558
[6]   Kiguradze-type Oscillation Theorems for Second Order Superlinear Dynamic Equations on Time Scales [J].
Jia Baoguo ;
Erbe, Lynn ;
Peterson, Allan .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (04) :580-592
[7]  
Kelley W., 2004, The theory of differential equations: classical and qualitative
[8]  
Kusano T., 1975, ANN MAT PUR APPL, V106, P171
[9]   OSCILLATION AND ASYMPTOTIC-BEHAVIOR OF 2ND-ORDER DIFFERENCE-EQUATIONS [J].
ZHANG, BG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (01) :58-68
[10]  
[No title captured]