Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches

被引:240
作者
Durian, DJ
机构
[1] Department of Physics and Astronomy, University of California, Los Angeles, CA
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 02期
关键词
D O I
10.1103/PhysRevE.55.1739
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By focusing on entire gas bubbles, rather than soap films or vertices, a microscopic model was recently developed for the macroscopic deformation and flow of foam in which dimensionality, energy storage, and dissipation mechanisms, polydispersity, and the gas-liquid ratio all can be varied easily [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)]. Here, a more complete account of the model is presented, along with results for linear rheological properties as a function of the latter two important physical parameters; It is shown that the elastic character vanishes with increasing liquid content in a manner that is consistent with rigidity percolation and that is almost independent of polydispersity. As the melting transition is approached, the bubble motion becomes increasingly nonaffine and the relaxation time scale appears to diverge. Results are also presented for nonlinear behavior at large applied stress, and for the sudden avalanchelike rearrangements of bubbles from one tightly packed configuration to another at small applied strain rates. The distribution of released energy is a power law for small events, but exhibits an exponential cutoff independent of system size. This is in accord with multiple light scattering experiments, but not with other simulations predicting self-organized criticality.
引用
收藏
页码:1739 / 1751
页数:13
相关论文
共 45 条