On conditional Borel-Cantelli lemmas for sequences of random variables

被引:14
作者
Liu, Jicheng [1 ]
Rao, B. L. S. Prakasa
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Conditional Borel-Cantelli lemma; Weighted Borel-Cantelli lemma;
D O I
10.1016/j.jmaa.2012.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some conditional Borel-Cantelli lemmas for sequences of random variables. As an application, a conditional version of the weighted Borel-Cantelli lemma is obtained. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 165
页数:10
相关论文
共 13 条
[1]  
Ambrosio L., 2012, PREPRINT
[2]  
[Anonymous], 1961, Math. Scand., DOI [DOI 10.7146/MATH.SCAND.A-10643, 10.7146/math.scand.a-10643]
[3]   The Borel-Cantelli lemma under dependence conditions [J].
Chandra, Tapas Kumar .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (04) :390-395
[4]   On the Borel-Cantelli lemma and its generalization [J].
Feng, Chunrong ;
Li, Liangpan ;
Shen, Jian .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (21-22) :1313-1316
[5]   Comments on the paper: A bilateral inequality on the Borel-Cantelli Lemma [J].
Hu Shuhe ;
Wang Xuejun ;
Li Xiaoqin ;
Zhang Yuanyuan .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (07) :889-893
[6]  
Kochen S., 1964, Illinois J. Math., V8, P248, DOI DOI 10.1215/IJM/1256059668
[7]  
Majerek D., 2005, Int J Pure Appl Math, V20, P143
[8]   A generalization of the Borel-Cantelli Lemma [J].
Petrov, VV .
STATISTICS & PROBABILITY LETTERS, 2004, 67 (03) :233-239
[9]   A note on the Borel-Cantelli lemma [J].
Petrov, VV .
STATISTICS & PROBABILITY LETTERS, 2002, 58 (03) :283-286
[10]  
Prakasa Rao B.L.S., 2011, PREPRINT