Refactoring the Genetic Code for Increased Evolvability

被引:17
作者
Pines, Gur [1 ,2 ]
Winkler, James D. [1 ,2 ,3 ]
Pines, Assaf
Gill, Ryan T. [1 ,2 ]
机构
[1] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Shell Biodomain, Houston, TX USA
关键词
evolution; genetic code; genome synthesis; saturation mutagenesis; ESCHERICHIA-COLI; SATURATION MUTAGENESIS; DIRECTED EVOLUTION; PROTEIN FUNCTION; AMINO-ACIDS; GENOME; RESISTANCE; ORGANISMS; SELECTION; FITNESS;
D O I
10.1128/mBio.01654-17
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of single nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.
引用
收藏
页数:14
相关论文
共 90 条
[2]   Total Synthesis of a Functional Designer Eukaryotic Chromosome [J].
Annaluru, Narayana ;
Muller, Heloise ;
Mitchell, Leslie A. ;
Ramalingam, Sivaprakash ;
Stracquadanio, Giovanni ;
Richardson, Sarah M. ;
Dymond, Jessica S. ;
Kuang, Zheng ;
Scheifele, Lisa Z. ;
Cooper, Eric M. ;
Cai, Yizhi ;
Zeller, Karen ;
Agmon, Neta ;
Han, Jeffrey S. ;
Hadjithomas, Michalis ;
Tullman, Jennifer ;
Caravelli, Katrina ;
Cirelli, Kimberly ;
Guo, Zheyuan ;
London, Viktoriya ;
Yeluru, Apurva ;
Murugan, Sindurathy ;
Kandavelou, Karthikeyan ;
Agier, Nicolas ;
Fischer, Gilles ;
Yang, Kun ;
Martin, J. Andrew ;
Bilgel, Murat ;
Bohutski, Pavlo ;
Boulier, Kristin M. ;
Capaldo, Brian J. ;
Chang, Joy ;
Charoen, Kristie ;
Choi, Woo Jin ;
Deng, Peter ;
DiCarlo, James E. ;
Doong, Judy ;
Dunn, Jessilyn ;
Feinberg, Jason I. ;
Fernandez, Christopher ;
Floria, Charlotte E. ;
Gladowski, David ;
Hadidi, Pasha ;
Ishizuka, Isabel ;
Jabbari, Javaneh ;
Lau, Calvin Y. L. ;
Lee, Pablo A. ;
Li, Sean ;
Lin, Denise ;
Linder, Matthias E. .
SCIENCE, 2014, 344 (6179) :55-58
[3]   Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis [J].
Asad, Sedigheh ;
Dastgheib, Seyed Mohammad Mehdi ;
Khajeh, Khosro .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2016, 63 (06) :789-794
[4]   Genome dynamics during experimental evolution [J].
Barrick, Jeffrey E. ;
Lenski, Richard E. .
NATURE REVIEWS GENETICS, 2013, 14 (12) :827-839
[5]   Rapid and Efficient One-Step Metabolic Pathway Integration in E-coli [J].
Bassalo, Marcelo C. ;
Garst, Andrew D. ;
Halweg-Edwards, Andrea L. ;
Grau, William C. ;
Domaille, Dylan W. ;
Mutalik, Vivek K. ;
Arkin, Adam P. ;
Gill, Ryan T. .
ACS SYNTHETIC BIOLOGY, 2016, 5 (07) :561-568
[6]   Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment [J].
Biddle, Wil ;
Schmitt, Margaret A. ;
Fisk, John D. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (21) :10042-10050
[7]   The Genome Project-Write [J].
Boeke, Jef D. ;
Church, George ;
Hessel, Andrew ;
Kelley, Nancy J. ;
Arkin, Adam ;
Cai, Yizhi ;
Carlson, Rob ;
Chakravarti, Aravinda ;
Cornish, Virginia W. ;
Holt, Liam ;
Isaacs, Farren J. ;
Kuiken, Todd ;
Lajoi, Marc ;
Lessor, Tracy ;
Lunshof, Jeantine ;
Maurano, Matthew T. ;
Mitchell, Leslie A. ;
Rine, Jasper ;
Rosser, Susan ;
Sanjana, Neville E. ;
Silver, Pamela A. ;
Valle, David ;
Wang, Harris ;
Way, Jeffrey C. ;
Yang, Luhan .
SCIENCE, 2016, 353 (6295) :126-127
[8]   Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes [J].
Cahn, J. K. B. ;
Baumschlager, A. ;
Brinkmann-Chen, S. ;
Arnold, F. H. .
PROTEIN ENGINEERING DESIGN & SELECTION, 2016, 29 (01) :31-38
[9]   Genome engineering [J].
Carr, Peter A. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2009, 27 (12) :1151-1162
[10]   Expanding and Reprogramming the Genetic Code of Cells and Animals [J].
Chin, Jason W. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 83, 2014, 83 :379-408