A CHARACTERIZATION OF SEMIPROJECTIVITY FOR SUBHOMOGENEOUS C*-ALGEBRAS

被引:0
作者
Enders, Dominic [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
来源
DOCUMENTA MATHEMATICA | 2016年 / 21卷
基金
新加坡国家研究基金会;
关键词
C*-algebras; semiprojectivity; subhomogeneous; quantum permutation algebras; NORMAL OPERATORS; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study semiprojective, subhomogeneous C*-algebras and give a detailed description of their structure. In particular, we find two characterizations of semiprojectivity for subhomogeneous C*-algebras: one in terms of their primitive ideal spaces and one by means of special direct limit structures over one-dimensional NCCW complexes. These results are obtained by working out several new permanence results for semiprojectivity, including a complete description of its behavior with respect to extensions by homogeneous C*-algebras.
引用
收藏
页码:987 / 1050
页数:64
相关论文
共 38 条
[1]  
[Anonymous], 1977, C ALGEBRAS
[2]  
[Anonymous], 1993, K THEORY C ALGEBRAS, DOI DOI 10.1112/BLMS/27.2.196
[3]  
Aubin JP., 1990, SET VALUED ANAL
[4]   Integration over the Pauli quantum group [J].
Banica, Teodor ;
Collins, Benoit .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (08) :942-961
[5]   SUBNORMAL WEIGHTED SHIFTS AND ASYMPTOTIC PROPERTIES OF NORMAL OPERATORS [J].
BASTIAN, JJ ;
HARRISON, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) :475-479
[6]   PARTITIONING A SET [J].
BING, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (12) :1101-1110
[7]   SHAPE-THEORY FOR C-STAR-ALGEBRAS [J].
BLACKADAR, B .
MATHEMATICA SCANDINAVICA, 1985, 56 (02) :249-275
[8]  
Blackadar B., 2012, MATHOA12071909V3 ARX
[9]  
Blackadar B., 2004, ADV STUD PURE MATH, V38, P1
[10]  
Blackadar B., 2006, Operator algebras: theory of C*-algebras and von Neumann algebras