A Gaussian Uniform Mixture Model for Robust Kalman Filtering

被引:8
|
作者
Brunot, Mathieu [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, F-31000 Toulouse, France
关键词
Kalman filters; Noise measurement; Jacobian matrices; Mixture models; Reliability theory; Instruments; Bayesian estimation; Kalman filters (KFs); mixture models; noise robustness; FORMULAS; TRACKING;
D O I
10.1109/TAES.2019.2953414
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article presents a Kalman-type recursive estimator for discrete-time systems with a measurement noise modeled by a Gaussian-uniform mixture. The objective is to deal with data containing outliers that degrade the performance of the regular Kalman filter. The proposed non-Gaussian noise model takes into account the reliability of the measurement with respect to erroneous data. The Kalman-type estimator is based on Masreliez's formulation which copes with non-Gaussian noise models. Results in different simulated conditions are displayed to evaluate the performance of the newly-presented algorithm and to compare it to state-of-art alternatives.
引用
收藏
页码:2656 / 2665
页数:10
相关论文
共 50 条
  • [41] A TDOA GAUSSIAN MIXTURE MODEL FOR IMPROVING ACOUSTIC SOURCE TRACKING
    Oualil, Youssef
    Faubel, Friedrich
    Doss, Mathew Magimai
    Klakow, Dietrich
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1339 - 1343
  • [42] Spatiotemporal Learning via Mixture Importance Gaussian Filtering With Sparse Regularization
    Zhang, Hongwei
    Ye, Xiaoyu
    Hu, Qi
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 279 - 283
  • [43] Computation of an efficient and robust estimator in a semiparametric mixture model
    Wu, Jingjing
    Yao, Weixin
    Xiang, Sijia
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (11) : 2128 - 2137
  • [44] Robust Localization Using IMM Filter Based on Skew Gaussian-Gamma Mixture Distribution in Mixed LOS/NLOS Condition
    Youn, Wonkeun
    Huang, Yulong
    Myung, Hyun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (07) : 5166 - 5182
  • [45] Distributed Robust Kalman Filters Under Model Uncertainty and Multiplicative Disturbance
    Yu, Xingkai
    Li, Jianxun
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (02) : 973 - 988
  • [46] Outlier-Robust Extended Kalman Filtering for Bioinspired Integrated Navigation System
    Qiu, Zhenbing
    Wang, Shanpeng
    Hu, Pengwei
    Guo, Lei
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (04) : 5881 - 5894
  • [47] A Gaussian Gamma mixture model for Indian ocean surface wind speed
    Kusuru, Durgesh
    Jyothi, Bala Naga, V
    Imandi, Raju
    Turlapaty, Anish Chand
    Thakur, Mainak
    OCEANS 2022, 2022,
  • [48] Conditional classifiers and boosted conditional Gaussian mixture model for novelty detection
    Mohammadi-Ghazi, Reza
    Marzouk, Youssef M.
    Buyukozturk, Oral
    PATTERN RECOGNITION, 2018, 81 : 601 - 614
  • [49] Identification of changes in the North Atlantic cyclogenesis using a Gaussian mixture model
    Cesar Buendia-Espinoza, Julio
    Perez-Rodriguez, Paulino
    Manuel Gonzalez-Camacho, Juan
    Perez-Elizalde, Sergio
    Exebio-Garcia, Adolfo
    Rosengaus Moshinsky, Michel
    Pena, Malaquias
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2017, 8 (04) : 5 - 18
  • [50] Model-based classification using latent Gaussian mixture models
    McNicholas, Paul D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (05) : 1175 - 1181