Research progress and prospect in typical sulfide solid-state electrolytes

被引:32
作者
Duan, Yi [1 ,2 ,3 ]
Bai, Xiangtao [1 ,2 ,3 ]
Yu, Tianwei [1 ,2 ,3 ]
Rong, Yang [1 ,2 ,3 ]
Wu, Yanlong [1 ,2 ,3 ]
Wang, Xi [4 ]
Yang, Junfeng [4 ]
Wang, Jiantao [1 ,2 ,3 ]
机构
[1] GRINM Grp Corp Ltd, Natl Power Battery Innovat Ctr, Beijing 100088, Peoples R China
[2] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
[4] China Ctr Informat Ind Dev, Beijing 100048, Peoples R China
关键词
All-solid-state lithium battery; Sulfide solid electrolyte; Lithium transport; Stability; LITHIUM ION CONDUCTIVITY; ELECTROCHEMICAL STABILITY; SUPERIONIC CONDUCTORS; DIFFUSION PATHWAYS; THIO-LISICON; LI6PS5X X; ARGYRODITE ELECTROLYTES; COMPOSITE ELECTROLYTES; INTERPHASE FORMATION; INTERFACE STABILITY;
D O I
10.1016/j.est.2022.105382
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to the potential safety issues of liquid lithium-ion batteries, all-solid-state lithium batteries (ASSLBs) combine with high energy density and safety performance are considered to be a highly promising next -generation battery system. As one of the important components in ASSLBs, different types of solid-state elec-trolytes (SSEs) are designed to meet the complex requirements in ASSLBs. Among them, sulfides have been widely researched and focused on as a result of the highest ionic transport performance available. However, there are still some challenges to be solved for sulfide SSEs, such as narrow electrochemical window, low moisture tolerance and unstable interface between sulfide SSEs and anode or cathode layers. Herein, this article intends to review the properties of different types of sulfide SSEs and their synthesis methods, interface and electrochemical stability and humidity tolerance. The future application prospects of sulfide SSEs are also discussed.
引用
收藏
页数:16
相关论文
共 189 条
[51]   Fabrication of Sub-Micrometer-Thick Solid Electrolyte Membranes of β-Li3PS4 via Tiled Assembly of Nanoscale, Plate-Like Building Blocks [J].
Hood, Zachary D. ;
Wang, Hui ;
Pandian, Amaresh Samuthira ;
Peng, Rui ;
Gilroy, Kyle D. ;
Chi, Miaofang ;
Liang, Chengdu ;
Xia, Younan .
ADVANCED ENERGY MATERIALS, 2018, 8 (21)
[52]  
Hori S., 2016, FRONT ENERGY RES, P4
[53]   Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure [J].
Hori, Satoshi ;
Taminato, Sou ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Kato, Yuki ;
Kanno, Ryoji .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 :727-736
[54]   Ionic conduction mechanism of a lithium superionic argyrodite in the Li-Al-Si-S-O system [J].
Huang, Wenze ;
Cheng, Lindong ;
Hori, Satoshi ;
Suzuki, Kota ;
Yonemura, Masao ;
Hirayama, Masaaki ;
Kanno, Ryoji .
MATERIALS ADVANCES, 2020, 1 (03) :334-340
[55]   Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system [J].
Huang, Wenze ;
Yoshino, Kazuhiro ;
Hori, Satoshi ;
Suzuki, Kota ;
Yonemura, Masao ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF SOLID STATE CHEMISTRY, 2019, 270 :487-492
[56]  
Ilina E.A., 2021, J PHYS C SER, V1967
[57]   Conduction Mechanism of Li10GeP2S12-type Lithium Superionic Conductors in a Li-Sn-Si-P-S System [J].
Inagaki, Makoto ;
Suzuki, Kota ;
Hori, Satoshi ;
Yoshino, Kazuhiro ;
Matsui, Naoki ;
Yonemura, Masao ;
Hirayama, Masaaki ;
Kanno, Ryoji .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3485-3490
[58]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[59]   A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent [J].
Ito, Seitaro ;
Nakakita, Moeka ;
Aihara, Yuichi ;
Uehara, Takahiro ;
Machida, Nobuya .
JOURNAL OF POWER SOURCES, 2014, 271 :342-345
[60]  
Jiang H., 2021, J ALLOYS COMPD, P874