Subspace clustering

被引:50
作者
Kriegel, Hans-Peter [1 ]
Kroeger, Peer [1 ]
Zimek, Arthur [1 ]
机构
[1] Univ Munich, Inst Informat, D-80538 Munich M, Germany
关键词
HIGH-DIMENSIONAL DATA; ALGORITHM; SELECTION; VARIABLES;
D O I
10.1002/widm.1057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace clustering refers to the task of identifying clusters of similar objects or data records (vectors) where the similarity is defined with respect to a subset of the attributes (i.e., a subspace of the data space). The subspace is not necessarily (and actually is usually not) the same for different clusters within one clustering solution. In this article, the problems motivating subspace clustering are sketched, different definitions and usages of subspaces for clustering are described, and exemplary algorithmic solutions are discussed. Finally, we sketch current research directions. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 107 条
[1]  
ACHTERT E, 2007, P 12 INT C DAT SYST
[2]  
ACHTERT E, 2006, P 12 ACM INT C KNOWL
[3]  
Achtert E, 2011, P 12 INT S SPAT TEMP
[4]  
Achtert E., 2007, P 7 SIAM INT C DAT M
[5]  
ACHTERT E, 2008, P 8 SIAM INT C DAT M
[6]  
ACHTERT E, 2007, P 19 INT C SCI STAT
[7]  
Aggarwal CC, 2001, LECT NOTES COMPUT SC, V1973, P420
[8]  
AGGARWAL CC, 1999, P ACM INT C MAN DAT
[9]  
AGGARWAL CC, 2000, P ACM INT C MAN DAT
[10]  
AGRAWAL R, 1998, P ACM INT C MAN DAT