On the semi-classical approximation of the solution of the Heisenberg equation with spin

被引:0
作者
Ichinose, W
机构
来源
ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE | 1997年 / 67卷 / 01期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Hamiltonians describing the motion of some charged particles with spin in an electromagnetic field. Let U-h(t,s) be its propagator and F-h an observable. Then the solution of the Heisenberg equation with F-h at t = s is given by U-h(t,s)*FhUh(t,s). In this paper we compute the semi-classical approximation of U-h(t,s)*FhUh(t,s) in terms of pseudo-differential operators. From this formula we get the classical limit as h --> 0 of the time evolution of the mean value of F-h for initial states centered suitably in classical phase space. Then the relation between quantum and classical mechanics can be shown.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 10 条
[1]  
FLANDERS H, 1963, DIFFERENTIAL FORMS
[2]   CLASSICAL LIMIT FOR QUANTUM-MECHANICAL CORRELATION-FUNCTIONS [J].
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) :265-277
[3]  
Hormander L., 1985, ANAL LINEAR PARTIAL
[4]  
Ichinose W, 1995, OSAKA J MATH, V32, P327
[5]  
Maslov V.P., 1981, Semiclassical Approximation in Quantum Mechanics
[6]  
Messiah A., 1959, Mecanique Quantique, V1
[7]  
Robert D., 1987, AUTOUR APPROXIMATION
[9]   SCHRODINGER EVOLUTION-EQUATIONS WITH MAGNETIC-FIELDS [J].
YAJIMA, K .
JOURNAL D ANALYSE MATHEMATIQUE, 1991, 56 :29-76
[10]  
ZUCCHINI R, 1984, ANN I H POINCARE-PHY, V40, P417