Coherent transport properties of a three-terminal hybrid superconducting interferometer

被引:37
作者
Vischi, F. [1 ,2 ,3 ]
Carrega, M. [1 ,2 ]
Strambini, E. [1 ,2 ]
D'Ambrosio, S. [1 ,2 ]
Bergeret, F. S. [4 ,5 ]
Nazarov, Yu. V. [6 ]
Giazotto, F. [1 ,2 ]
机构
[1] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[4] Univ Basque Country, CSIC, Ctr Mixto, CFM MPC, Manuel de Lardizabal 5, E-20018 San Sebastian, Spain
[5] DIPC, Manuel de Lardizabal 5, E-20018 San Sebastian, Spain
[6] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会;
关键词
JOSEPHSON-JUNCTIONS; IMPURITY; GAP;
D O I
10.1103/PhysRevB.95.054504
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, such as the one recently realized by Strambini et al. for control of the Andreev spectrum via an external magnetic field. This system, called omega-SQUIPT, consists of a T-shaped diffusive normal metal (N) attached to three superconductors (S) forming a double-loop configuration. By using the quasiclassical Green-function formalism, we calculate the local normalized density of states, the Josephson currents through the device, and the dependence of the former on the length of the junction arms, the applied magnetic field, and the S/N interface transparencies. We show that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes, and we explore the quasiparticle transport by considering a metallic probe tunnel-coupled to the Josephson junction and calculating its I-V characteristics. Finally, we study the performances of the omega-SQUIPT and its potential applications by investigating its electrical and magnetometric properties.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Superconducting phase transistor in diffusive four-terminal ferromagnetic Josephson junctions [J].
Alidoust, Mohammad ;
Sewell, Granville ;
Linder, Jacob .
PHYSICAL REVIEW B, 2012, 85 (14)
[2]   Multi-terminal superconducting phase qubit [J].
Amin, MHS ;
Omelyanchouk, AN ;
Blais, A ;
van den Brink, AM ;
Rose, G ;
Duty, T ;
Zagoskin, AM .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 368 (1-4) :310-314
[3]   Mesoscopic multiterminal Josephson structures. I. Effects of nonlocal weak coupling [J].
Amin, MHS ;
Omelyanchouk, AN ;
Zagoskin, AM .
LOW TEMPERATURE PHYSICS, 2001, 27 (08) :616-623
[4]   Analytically determined topological phase diagram of the proximity-induced gap in diffusive n-terminal Josephson junctions [J].
Amundsen, Morten ;
Ouassou, Jabir Ali ;
Linder, Jacob .
SCIENTIFIC REPORTS, 2017, 7
[5]   Quasiclassical Green's function approach to mesoscopic superconductivity [J].
Belzig, W ;
Wilhelm, FK ;
Bruder, C ;
Schön, G ;
Zaikin, AD .
SUPERLATTICES AND MICROSTRUCTURES, 1999, 25 (5-6) :1251-1288
[6]  
Bennemann K.-H., 2008, SUPERCONDUCTIVITY, V1
[7]  
Clarke J., 2006, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems
[8]   Normal metal tunnel junction-based superconducting quantum interference proximity transistor [J].
D'Ambrosio, Sophie ;
Meissner, Martin ;
Blanc, Christophe ;
Ronzani, Alberto ;
Giazotto, Francesco .
APPLIED PHYSICS LETTERS, 2015, 107 (11)
[9]   DIRECT MEASUREMENT OF QUASIPARTICLE-LIFETIME BROADENING IN A STRONG-COUPLED SUPERCONDUCTOR [J].
DYNES, RC ;
NARAYANAMURTI, V ;
GARNO, JP .
PHYSICAL REVIEW LETTERS, 1978, 41 (21) :1509-1512
[10]  
Eriksson E., ARXIV161205418