Solutions of second order degenerate integro-differential equations in vector-valued function spaces

被引:3
作者
Bu ShangQuan [1 ]
Cai Gang [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier multiplier; degenerate integro-differential equation; well-posedness; Besov spaces; Triebel-Lizorkin spaces; PERIODIC BESOV-SPACES; FOURIER MULTIPLIERS; BANACH-SPACES; MAXIMAL REGULARITY; DIFFERENTIAL-EQUATIONS; INFINITE DELAY;
D O I
10.1007/s11425-012-4491-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness of the second order degenerate integro-differential equations (P (2)): (Mu)aEuro(3)(t) + alpha(Mu)'(t) = Au(t) + I pound (-a) (t) a(t - s)Au(s)ds + f(t), 0 a (c) 1/2 t a (c) 1/2 2 pi, with periodic boundary conditions Mu(0) = Mu(2 pi), (Mu)'(0) = (Mu)'(2 pi), in periodic Lebesgue-Bochner spaces L (p) (,X), periodic Besov spaces B (p,q) (s) (,X) and periodic Triebel-Lizorkin spaces F (p,q) (s) (,X), where A and M are closed linear operators on a Banach space X satisfying D(A) aS, D(M), a a L (1)(a"e(+)) and alpha is a scalar number. Using known operatorvalued Fourier multiplier theorems, we completely characterize the well-posedness of (P (2)) in the above three function spaces.
引用
收藏
页码:1059 / 1072
页数:14
相关论文
共 14 条
[1]   Fourier multipliers for Holder continuous functions and maximal regularity [J].
Arendt, W ;
Batty, C ;
Bu, SQ .
STUDIA MATHEMATICA, 2004, 160 (01) :23-51
[2]   Operator-valued Fourier multipliers on periodic Besov spaces and applications [J].
Arendt, W ;
Bu, SQ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :15-33
[3]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[4]  
Bourgain J, 1988, MONOGR FESTBOOKS PUR, V98, P1
[5]  
Bu S., STUDIA MATH IN PRESS
[6]   Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces [J].
Bu, Shangquan ;
Fang, Yi .
STUDIA MATHEMATICA, 2008, 184 (02) :103-119
[7]   PERIODIC SOLUTIONS OF DELAY EQUATIONS IN BESOV SPACES AND TRIEBEL-LIZORKIN SPACES [J].
Bu, Shangquan ;
Fang, Yi .
TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03) :1063-1076
[8]   Operator-valued Fourier multipliers on periodic triebel spaces [J].
Bu, SQ ;
Kim, JM .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (05) :1049-1056
[9]   Periodic solutions of second order differential equations in Banach spaces [J].
Keyantuo, V ;
Lizama, C .
MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (03) :489-514
[10]   Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces [J].
Keyantuo, V ;
Lizama, C .
STUDIA MATHEMATICA, 2005, 168 (01) :25-50