Local-in-Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods

被引:166
作者
Masmoudi, Nader [1 ]
Wong, Tak Kwong [2 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Univ Penn, Dept Math, David Rittenhouse Lab, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; ZERO VISCOSITY LIMIT; BOUNDARY-LAYER; ANALYTIC SOLUTIONS; VANISHING VISCOSITY; INVISCID LIMIT; WELL-POSEDNESS; ILL-POSEDNESS; HALF-SPACE; EULER;
D O I
10.1002/cpa.21595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local existence and uniqueness for the two-dimensional Prandtl system in weighted Sobolev spaces under Oleinik's monotonicity assumption. In particular we do not use the Crocco transform or any change of variables. Our proof is based on a new nonlinear energy estimate for the Prandtl system. This new energy estimate is based on a cancellation property that is valid under the monotonicity assumption. To construct the solution, we use a regularization of the system that preserves this nonlinear structure. This new nonlinear structure may give some insight into the convergence properties from the Navier-Stokes system to the Euler system when the viscosity goes to 0. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1683 / 1741
页数:59
相关论文
共 42 条
[1]  
Alexandre R., 2012, ARXIV12035991
[2]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[3]  
Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
[4]  
2-L
[5]  
Constantin P., 2014, ARXIV 1403 5748
[6]   Concerning the W k,p -Inviscid Limit for 3-D Flows Under a Slip Boundary Condition [J].
da Veiga, H. Beirao ;
Crispo, F. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (01) :117-135
[7]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88
[8]  
Gerard-Varet D., 2013, ARXIV 1305 0221
[9]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[10]  
Grenier E, 2000, COMMUN PUR APPL MATH, V53, P1067