A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure

被引:44
作者
Peng, Zhe [1 ,2 ]
Ren, Feihong [1 ]
Yang, Shanshan [1 ]
Wang, Muqin [1 ]
Sun, Jie [1 ]
Wang, Deyu [1 ,3 ]
Xu, Wu [2 ]
Zhang, Ji-Guang [2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[3] Tianmu Lake Inst Adv Energy Storage Technol, Liyang 213300, Peoples R China
基金
国家重点研发计划;
关键词
Li metal anode; AlN; Coulombic efficiency; High-rate; High-capacity; SOLID-ELECTROLYTE INTERPHASE; DENDRITE; COMPOSITE; LAYER; POLYSULFIDE; NUCLEATION; DEPOSITION; EVOLUTION; NITRATE; SURFACE;
D O I
10.1016/j.nanoen.2019.02.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium (Li) metal battery is one of the ideal candidates for the next-generation high-energy-density batteries, but its practical application is still plagued by its large volume change, low coulombic efficiency (CE), and safety issues related to dendrite growth. This work describes a potential solution to these issues using a cross-linked Li9Al4-Li3N-AlN (LLA) structure as a stable host for Li metal anode. The in situ-formed uniform Li9Al4 and Li3N sites on AlN nano-clusters can suppress dendrite growth during the Li plating/stripping process. The intrinsic lithiophilicity of Li9Al4 sites with adjacent Li3N attracts Li+ ions for fast migration and uniform plating/stripping. These unique features lead to dimensional stability of Li@LLA composite anodes (1540 mAh g(-1) and 1600 mAh cm(-3)). High-rate, high-capacity cycling of Li metal anodes has been maintained with a CE of similar to 98% in carbonate-based electrolytes. High capacity retention of 90.1% is achieved for a Li@LLA parallel to LiNi0.8Co0.1Mn0.1O2 full cell at the 200th cycle. Therefore, the LLA structure with a simple fabrication process could be a promising candidate to enhance the safety of next-generation Li metal batteries.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 47 条
[1]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[2]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[3]   Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries [J].
Baloch, Marya ;
Shanmukaraj, Devaraj ;
Bondarchuk, Oleksandr ;
Bekaert, Emilie ;
Rojo, Teofilo ;
Armand, Michel .
ENERGY STORAGE MATERIALS, 2017, 9 :141-149
[4]   FAST IONIC-CONDUCTIVITY IN LITHIUM NITRIDE [J].
BOUKAMP, BA ;
HUGGINS, RA .
MATERIALS RESEARCH BULLETIN, 1978, 13 (01) :23-32
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[7]  
Chen S., 2018, JOULE, V2, P1
[8]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[9]   Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Chen, Xiang ;
Guan, Chao ;
Huang, Jia-Qi ;
Peng, Hong-Jie ;
Zhang, Rui ;
Yang, Shu-Ting ;
Zhang, Qiang .
CHEM, 2017, 2 (02) :258-270
[10]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895