The impact of electrode plasma dynamics on the radiation production in a high power microwave device is examined using particle-in-cell simulations. Using the design of a compact 2.4 GHz magnetically insulated line oscillator (MILO) as the basis for numerical simulations, we characterize the time-dependent device power and radiation output over a range of cathode plasma formation rates. These numerical simulations can self-consistently produce radiation characteristics that are similar to measured signals in long pulse duration MILOs. This modeling capability should result in improved assessment of existing high-power microwave devices and lead to new designs for increased radiation pulse durations. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794955]