A new family of set-theoretic solutions of the Yang-Baxter equation

被引:16
|
作者
Castelli, M. [1 ]
Catino, F. [1 ]
Pinto, G. [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Via Prov Lecce Arnesano, I-73100 Lecce, Italy
关键词
Cycle set; set-theoretic solution; Yang-Baxter equation; EXTENSIONS;
D O I
10.1080/00927872.2017.1350700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new family of non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation is constructed. Two subfamilies, consisting of irretractable square-free solutions, are new counterexamples to Gateva-Ivanova's Strong Conjecture [7]. They are in addition to those obtained by Vendramin [15] and [1].
引用
收藏
页码:1622 / 1629
页数:8
相关论文
共 50 条
  • [1] ENUMERATION OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION
    Akgun, O.
    Mereb, M.
    Vendramin, L.
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1469 - 1481
  • [2] A note on set-theoretic solutions of the Yang-Baxter equation
    Smoktunowicz, Agata
    JOURNAL OF ALGEBRA, 2018, 500 : 3 - 18
  • [3] Primitive set-theoretic solutions of the Yang-Baxter equation
    Cedo, F.
    Jespers, E.
    Okninski, J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (09)
  • [4] A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation
    Gateva-Ivanova, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) : 3828 - 3858
  • [5] Simplicity of indecomposable set-theoretic solutions of the Yang-Baxter equation
    Castelli, Marco
    Mazzotta, Marzia
    Stefanelli, Paola
    FORUM MATHEMATICUM, 2022, 34 (02) : 531 - 546
  • [6] Skew lattices and set-theoretic solutions of the Yang-Baxter equation
    Cvetko-Vah, Karin
    Verwimp, Charlotte
    JOURNAL OF ALGEBRA, 2020, 542 : 65 - 92
  • [7] ON STRUCTURE GROUPS OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION
    Lebed, Victoria
    Vendramin, Leandro
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) : 683 - 717
  • [8] Finite Idempotent Set-Theoretic Solutions of the Yang-Baxter Equation
    Colazzo, Ilaria
    Jespers, Eric
    Kubat, Lukasz
    Van Antwerpen, Arne
    Verwimp, Charlotte
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, : 5458 - 5489
  • [9] Indecomposable involutive set-theoretic solutions of the Yang-Baxter equation
    Castelli, M.
    Catino, F.
    Pinto, G.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (10) : 4477 - 4493
  • [10] Set-theoretic solutions of the Yang-Baxter equation, graphs and computations
    Gateva-Ivanova, Tatiana
    Majid, Shahn
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (11-12) : 1079 - 1112