Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images

被引:26
作者
Chen, Tao [1 ]
Sun, Anchang [1 ,2 ]
Niu, Ruiqing [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Hubei, Peoples R China
[2] Beijing North Star Digital Remote Sensing Technol, Beijing 100120, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
surface urban heat island; land surface temperature; Multiple Endmember Spectral Mixture Analysis; ternary triangle contour graphics; time-series images; SPECTRAL MIXTURE ANALYSIS; VEGETATION COVER; IMPERVIOUS SURFACES; TEMPERATURE; PATTERNS; GIS; SHANGHAI; IMPACTS; HOUSTON; METRICS;
D O I
10.3390/ijerph16060971
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Man-made materials now cover a dominant proportion of urban areas, and such conditions not only change the absorption of solar radiation, but also the allocation of the solar radiation and cause the surface urban heat island effect, which is considered a serious problem associated with the deterioration of urban environments. Although numerous studies have been performed on surface urban heat islands, only a few have focused on the effect of land cover changes on surface urban heat islands over a long time period. Using six Landsat image scenes of the Metropolitan Development Area of Wuhan, our experiment (1) applied a mapping method for normalized land surface temperatures with three land cover fractions, which were impervious surfaces, non-chlorophyllous vegetation and soil and vegetation fractions, and (2) performed a fitting analysis of fierce change areas in the surface urban heat island intensity based on a time trajectory. Thematic thermal maps were drawn to analyze the distribution of and variations in the surface urban heat island in the study area. A Multiple Endmember Spectral Mixture Analysis was used to extract the land cover fraction information. Then, six ternary triangle contour graphics were drawn based on the land surface temperature and land cover fraction information. A time trajectory was created to summarize the changing characteristics of the surface urban heat island intensity. A fitting analysis was conducted for areas showing fierce changes in the urban heat intensity. Our results revealed that impervious surfaces had the largest impacts on surface urban heat island intensity, followed by the non-chlorophyllous vegetation and soil fraction. Moreover, the results indicated that the vegetation fraction can alleviate the occurrence of surface urban heat islands. These results reveal the impact of the land cover fractions on surface urban heat islands. Urban expansion generates impervious artificial objects that replace pervious natural objects, which causes an increase in land surface temperature and results in a surface urban heat island.
引用
收藏
页数:18
相关论文
共 58 条
[1]   SURVEY OF EMISSIVITY VARIABILITY IN THERMOGRAPHY OF URBAN AREAS [J].
ARTIS, DA ;
CARNAHAN, WH .
REMOTE SENSING OF ENVIRONMENT, 1982, 12 (04) :313-329
[2]   Impact of urbanization on US surface climate [J].
Bounoua, Lahouari ;
Zhang, Ping ;
Mostovoy, Georgy ;
Thome, Kurtis ;
Masek, Jeffrey ;
Imhoff, Marc ;
Shepherd, Marshall ;
Quattrochi, Dale ;
Santanello, Joseph ;
Silva, Julie ;
Wolfe, Robert ;
Toure, Ally Mounirou .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (08)
[3]  
Cao L.Q., 2009, THESIS
[4]   On the relation between NDVI, fractional vegetation cover, and leaf area index [J].
Carlson, TN ;
Ripley, DA .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (03) :241-252
[5]   Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors [J].
Chander, Gyanesh ;
Markham, Brian L. ;
Helder, Dennis L. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (05) :893-903
[6]   The Relationship between Urban Land Surface Material Fractions and Brightness Temperature Based on MESMA [J].
Chen, Tao ;
Zhang, Xujia ;
Niu, Ruiqing .
REMOTE SENSING, 2017, 9 (06)
[7]   Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes [J].
Chen, Xiao-Ling ;
Zhao, Hong-Mei ;
Li, Ping-Xiang ;
Yin, Zhi-Yong .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (02) :133-146
[8]  
Chen Y., 2002, REMOTE SENSING LAND, V4, P55, DOI DOI 10.6046/GTZYYG.2002.04.12
[9]   A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper [J].
Dennison, PE ;
Halligan, KQ ;
Roberts, DA .
REMOTE SENSING OF ENVIRONMENT, 2004, 93 (03) :359-367
[10]   Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE [J].
Dennison, PE ;
Roberts, DA .
REMOTE SENSING OF ENVIRONMENT, 2003, 87 (2-3) :123-135