Second-Order Topological Phases in Non-Hermitian Systems

被引:424
作者
Liu, Tao [1 ]
Zhang, Yu-Ran [1 ,2 ]
Ai, Qing [1 ,3 ]
Gong, Zongping [4 ]
Kawabata, Kohei [4 ]
Ueda, Masahito [4 ,5 ]
Nori, Franco [1 ,6 ]
机构
[1] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Wako, Saitama 3510198, Japan
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
[4] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构; 中国博士后科学基金;
关键词
PSEUDO-HERMITICITY; REALIZATION; SYMMETRY; HAMILTONIANS; INSULATOR; PHYSICS; NUMBER; STATES; MATTER; LASER;
D O I
10.1103/PhysRevLett.122.076801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d - 2)-dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes, which are localized not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down. The winding number (Chern number) based on complex wave vectors is used to characterize the second-order topological phases in 2D (3D). A possible experimental situation with ultracold atoms is also discussed. Our work lays the cornerstone for exploring higher-order topological phenomena in non-Hermitian systems.
引用
收藏
页数:8
相关论文
共 106 条
[81]   Topological insulators and superconductors [J].
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04)
[82]   Parity-time synthetic photonic lattices [J].
Regensburger, Alois ;
Bersch, Christoph ;
Miri, Mohammad-Ali ;
Onishchukov, Georgy ;
Christodoulides, Demetrios N. ;
Peschel, Ulf .
NATURE, 2012, 488 (7410) :167-171
[83]   Effective operator formalism for open quantum systems [J].
Reiter, Florentin ;
Sorensen, Anders S. .
PHYSICAL REVIEW A, 2012, 85 (03)
[84]   Topological Transition in a Non-Hermitian Quantum Walk [J].
Rudner, M. S. ;
Levitov, L. S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (06)
[85]   Topological superconductors: a review [J].
Sato, Masatoshi ;
Ando, Yoichi .
REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (07)
[86]   Higher-order topology in bismuth [J].
Schindler, Frank ;
Wang, Zhijun ;
Vergniory, Maia G. ;
Cook, Ashley M. ;
Murani, Anil ;
Sengupta, Shamashis ;
Kasumov, Alik Yu. ;
Deblock, Richard ;
Jeon, Sangjun ;
Drozdov, Ilya ;
Bouchiat, Helene ;
Gueron, Sophie ;
Yazdani, Ali ;
Bernevig, B. Andrei ;
Neupert, Titus .
NATURE PHYSICS, 2018, 14 (09) :918-+
[87]   Higher-order topological insulators [J].
Schindler, Frank ;
Cook, Ashley M. ;
Vergniory, Maia G. ;
Wang, Zhijun ;
Parkin, Stuart S. P. ;
Andrei Bernevig, B. ;
Neupert, Titus .
SCIENCE ADVANCES, 2018, 4 (06)
[88]   Observation of a phononic quadrupole topological insulator [J].
Serra-Garcia, Marc ;
Peri, Valerio ;
Susstrunk, Roman ;
Bilal, Osama R. ;
Larsen, Tom ;
Villanueva, Luis Guillermo ;
Huber, Sebastian D. .
NATURE, 2018, 555 (7696) :342-+
[89]   Quantum Oscillation from In-Gap States and a Non-Hermitian Landau Level Problem [J].
Shen, Huitao ;
Fu, Liang .
PHYSICAL REVIEW LETTERS, 2018, 121 (02)
[90]   Topological Band Theory for Non-Hermitian Hamiltonians [J].
Shen, Huitao ;
Zhen, Bo ;
Fu, Liang .
PHYSICAL REVIEW LETTERS, 2018, 120 (14)