Second-Order Topological Phases in Non-Hermitian Systems

被引:424
作者
Liu, Tao [1 ]
Zhang, Yu-Ran [1 ,2 ]
Ai, Qing [1 ,3 ]
Gong, Zongping [4 ]
Kawabata, Kohei [4 ]
Ueda, Masahito [4 ,5 ]
Nori, Franco [1 ,6 ]
机构
[1] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Wako, Saitama 3510198, Japan
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
[4] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构; 中国博士后科学基金;
关键词
PSEUDO-HERMITICITY; REALIZATION; SYMMETRY; HAMILTONIANS; INSULATOR; PHYSICS; NUMBER; STATES; MATTER; LASER;
D O I
10.1103/PhysRevLett.122.076801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d - 2)-dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes, which are localized not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down. The winding number (Chern number) based on complex wave vectors is used to characterize the second-order topological phases in 2D (3D). A possible experimental situation with ultracold atoms is also discussed. Our work lays the cornerstone for exploring higher-order topological phenomena in non-Hermitian systems.
引用
收藏
页数:8
相关论文
共 106 条
[31]   Topological insulator laser: Theory [J].
Harari, Gal ;
Bandres, Miguel A. ;
Lumer, Yaakov ;
Rechtsman, Mikael C. ;
Chong, Y. D. ;
Khajavikhan, Mercedeh ;
Christodoulides, Demetrios N. ;
Segev, Mordechai .
SCIENCE, 2018, 359 (6381)
[32]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[33]   The physics of exceptional points [J].
Heiss, W. D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
[34]   Parity-time-symmetric microring lasers [J].
Hodaei, Hossein ;
Miri, Mohammad-Ali ;
Heinrich, Matthias ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2014, 346 (6212) :975-978
[35]   Topolectrical-circuit realization of topological corner modes [J].
Imhof, Stefan ;
Berger, Christian ;
Bayer, Florian ;
Brehm, Johannes ;
Molenkamp, Laurens W. ;
Kiessling, Tobias ;
Schindler, Frank ;
Lee, Ching Hua ;
Greiter, Martin ;
Neupert, Titus ;
Thomale, Ronny .
NATURE PHYSICS, 2018, 14 (09) :925-+
[36]   SOLITONS WITH FERMION NUMBER 1/2 [J].
JACKIW, R ;
REBBI, C .
PHYSICAL REVIEW D, 1976, 13 (12) :3398-3409
[37]   High-order exceptional points in optomechanics [J].
Jing, H. ;
Ozdemir, S. K. ;
Lu, H. ;
Nori, Franco .
SCIENTIFIC REPORTS, 2017, 7
[38]   Optomechanically-induced transparency in parity-time-symmetric microresonators [J].
Jing, H. ;
Ozdemir, Sahin K. ;
Geng, Z. ;
Zhang, Jing ;
Lu, Xin-You ;
Peng, Bo ;
Yang, Lan ;
Nori, Franco .
SCIENTIFIC REPORTS, 2015, 5
[39]   PT-Symmetric Phonon Laser [J].
Jing, Hui ;
Oezdemir, S. K. ;
Lu, Xin-You ;
Zhang, Jing ;
Yang, Lan ;
Nori, Franco .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[40]   Experimental realization of the topological Haldane model with ultracold fermions [J].
Jotzu, Gregor ;
Messer, Michael ;
Desbuquois, Remi ;
Lebrat, Martin ;
Uehlinger, Thomas ;
Greif, Daniel ;
Esslinger, Tilman .
NATURE, 2014, 515 (7526) :237-U191