Second-Order Topological Phases in Non-Hermitian Systems

被引:424
作者
Liu, Tao [1 ]
Zhang, Yu-Ran [1 ,2 ]
Ai, Qing [1 ,3 ]
Gong, Zongping [4 ]
Kawabata, Kohei [4 ]
Ueda, Masahito [4 ,5 ]
Nori, Franco [1 ,6 ]
机构
[1] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Wako, Saitama 3510198, Japan
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
[4] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构; 中国博士后科学基金;
关键词
PSEUDO-HERMITICITY; REALIZATION; SYMMETRY; HAMILTONIANS; INSULATOR; PHYSICS; NUMBER; STATES; MATTER; LASER;
D O I
10.1103/PhysRevLett.122.076801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d - 2)-dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes, which are localized not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down. The winding number (Chern number) based on complex wave vectors is used to characterize the second-order topological phases in 2D (3D). A possible experimental situation with ultracold atoms is also discussed. Our work lays the cornerstone for exploring higher-order topological phenomena in non-Hermitian systems.
引用
收藏
页数:8
相关论文
共 106 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]   New directions in the pursuit of Majorana fermions in solid state systems [J].
Alicea, Jason .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[4]  
[Anonymous], 2021, Modern quantum mechanics
[5]   Parity-time-symmetric quantum critical phenomena [J].
Ashida, Yuto ;
Furukawa, Shunsuke ;
Ueda, Masahito .
NATURE COMMUNICATIONS, 2017, 8
[6]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[7]   Search for Majorana Fermions in Superconductors [J].
Beenakker, C. W. J. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, 2013, 4 :113-136
[8]   Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2017, 96 (24)
[9]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[10]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018