Existence of a Solution to the Cauchy Problem for the Aggregation Equation in Hyperbolic Space

被引:0
作者
Vildanova, V. F. [1 ]
机构
[1] Bashkir State Pedag Univ M Akmulla, 3a Oktyabrskoj Revoljucii Str, Ufa 450008, Russia
基金
俄罗斯基础研究基金会;
关键词
aggregation equation; solution existence; hyperbolic space; UNIQUENESS;
D O I
10.3103/S1066369X2007004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In hyperbolic space, we consider the Cauchy problem for the aggregation equation. Non-negative initial function is bounded and summable. We prove the existence of a weak solution on a small time interval. In the case where the kernel of the integral operator is smooth and rapidly decreases at infinity, the existence of a bounded solution on an arbitrary time interval is proved.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 9 条
[1]   EXISTENCE AND UNIQUENESS OF SOLUTIONS TO AN AGGREGATION EQUATION WITH DEGENERATE DIFFUSION [J].
Bertozzi, Andrea L. ;
Slepcev, Dejan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) :1617-1637
[2]   Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems [J].
Carrillo, J ;
Wittbold, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :93-121
[3]   ADMISSIBLE CONDITIONS FOR PARABOLIC EQUATIONS DEGENERATING AT INFINITY [J].
Kamin, Sh. ;
Pozio, M. A. ;
Tesei, A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (02) :239-251
[4]   Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces [J].
Mukminov, F. Kh. .
SBORNIK MATHEMATICS, 2017, 208 (08) :1187-1206
[5]   Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space [J].
Punzo, Fabio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (04) :485-501
[6]  
Sobolev S.L., 2008, Translations of Mathematical Monographs, V90
[7]   Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold [J].
Vil'danova, V. F. .
SBORNIK MATHEMATICS, 2020, 211 (02) :226-257
[8]   Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form [J].
Vil'danova, V. F. .
SBORNIK MATHEMATICS, 2018, 209 (02) :206-221
[9]  
Vildanova V.F., 2017, CMFD PEOPLES FRIENDS, V63, P557