POSITIVITY OF THE INTERTWINING OPERATOR AND HARMONIC ANALYSIS ASSOCIATED WITH THE JACOBI-DUNKL OPERATOR ON R

被引:49
作者
Chouchane, F. [1 ]
Mili, M. [2 ]
Trimeche, K. [3 ]
机构
[1] Preparatory Inst Engn Studies Monastir, Monastir 5019, Tunisia
[2] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
[3] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
Jacobi-Dunkl operator on R; positivity of the Jacobi-Dunkl intertwining operator and its dual; Jacobi-Dunkl transform; Jacobi-Dunkl convolution product;
D O I
10.1142/S0219530503000247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a differential-difference operator Lambda(alpha,beta), alpha > -1/2, beta is an element of R on R. The eigenfunction of this operator equal to 1 at zero is called the Jacobi-Dunkl kernel. We give a Laplace integral representation for this function and we prove that for alpha >= beta >= -1/2, alpha not equal -1/2, the kernel of this integral representation is positive. This result permits us to prove that the Jacobi-Dunkl intertwining operator and its dual are positive. Next we study the harmonic analysis associated with the operator Lambda(alpha,beta) (Jacobi-Dunkl transform, Jacobi-Dunkl translation operators, Jacobi-Dunkl convolution product, Paley Wiener and Plancherel theorems ...).
引用
收藏
页码:387 / 412
页数:26
相关论文
共 20 条
[1]   THE SPHERICAL FOURIER-TRANSFORM OF RAPIDLY DECREASING FUNCTIONS - A SIMPLE PROOF OF A CHARACTERIZATION DUE TO HARISH-CHANDRA, HELGASON, TROMBI, AND VARADARAJAN [J].
ANKER, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 96 (02) :331-349
[2]  
[Anonymous], 1994, THESIS MURDOCH U AUS
[3]  
Bloom W. R., 1995, Harmonic analysis of probability measures on hypergroups, pvi+601
[4]   Fourier transforms of Schwartz functions on Chebli-Trimeche hypergroups [J].
Bloom, WR ;
Xu, ZF .
MONATSHEFTE FUR MATHEMATIK, 1998, 125 (02) :89-109
[5]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2
[7]  
Finkel F., 2002, MINIMIZATION RECEIVE
[8]   PALEY-WIENER TYPE THEOREMS FOR A DIFFERENTIAL OPERATOR CONNECTED WITH SYMMETRIC SPACES [J].
FLENSTEDJENSEN, M .
ARKIV FOR MATEMATIK, 1972, 10 (01) :143-+
[9]  
Gelfand J. M., 1967, DISTRIBUTIONS, V4
[10]   NEW PROOF OF A PALEY-WIENER TYPE THEOREM FOR JACOBI TRANSFORM [J].
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1975, 13 (01) :145-159