Killing symmetries and Smarr formula for black holes in arbitrary dimensions

被引:31
作者
Banerjee, Rabin [1 ]
Majhi, Bibhas Ranjan [1 ]
Modak, Sujoy Kumar [1 ]
Samanta, Saurav [2 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
[2] Narasinha Dutt Coll, Howrah 711101, India
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 12期
关键词
COVARIANT CONSERVATION-LAWS; EFFECTIVE-MASS; ENTROPY; FIELD;
D O I
10.1103/PhysRevD.82.124002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate the effective Komar conserved quantities for the N + 1 dimensional charged Myers-Perry spacetime. At the event horizon we derive a new identity K-chi(mu) = 2ST where the left hand side is the Komar conserved quantity corresponding to the null Killing vector chi(mu) while in the right hand side S, T are the black hole entropy and Hawking temperature. From this identity we also derive the generalized Smarr formula connecting the macroscopic parameters M, J, Q of the black hole with its surface gravity and horizon area. The consistency of this new formula is established by an independent algebraic approach.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Rotating black holes in higher dimensional Einstein-Maxwell gravity [J].
Aliev, A. N. .
PHYSICAL REVIEW D, 2006, 74 (02)
[2]  
[Anonymous], 2004, RELATIVISTS TOOLKIT
[3]   Statistical origin of gravity [J].
Banerjee, Rabin ;
Majhi, Bibhas Ranjan .
PHYSICAL REVIEW D, 2010, 81 (12)
[4]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[5]   Generalized Smarr relation for Kerr-AdS black holes from improved surface integrals -: art. no. 044016 [J].
Barnich, G ;
Compère, G .
PHYSICAL REVIEW D, 2005, 71 (04) :044016-1
[6]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[7]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[8]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[9]   Black hole entropy from conformal field theory in any dimension [J].
Carlip, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (14) :2828-2831
[10]  
CARROL S., 2004, Spacetime and Geometry. An Introduction to General Relativity