A stochastic analysis of the impact of fluctuations in the environment on pre-exposure prophylaxis for HIV infection

被引:8
作者
Djordevic, Jasmina [1 ]
Silva, Cristiana J. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, Visegradska 33, Nish 18000, Serbia
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
关键词
HIV; AIDS epidemic model; Pre-exposure prophylaxis; Stochastic differential equations; Brownian motion; Extinction; Persistence; Numerical simulations; SIS EPIDEMIC MODEL; MATHEMATICAL-ANALYSIS; COST-EFFECTIVENESS; PREVENTION; HIV/AIDS; AIDS; COINFECTION; THRESHOLD; MEN; SEX;
D O I
10.1007/s00500-019-04611-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a stochastic model for HIV/AIDS transmission where pre-exposure prophylaxis is considered as a prevention measure for new HIV infections. A white noise is introduced into the model, representing fluctuations in the environment that manifest themselves on the transmission coefficient rate. We prove the existence and uniqueness of a global positive solution of the stochastic model and establish conditions under which extinction and persistence in mean hold. Numerical simulations are provided which illustrate the theoretical results, and conclusions are derived on the impact of the fluctuations in the environment on the number of the susceptible individuals that are under pre-exposure prophylaxis.
引用
收藏
页码:6731 / 6743
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 2006, HQ05422204 UNAIDS
[2]   New developments on AIDS-related cancers: The role of the delay and treatment options [J].
Carvalho, Ana R. M. ;
Pinto, Carla M. A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :8915-8928
[3]   STOCHASTIC ANALYSIS OF PRE- AND POSTEXPOSURE PROPHYLAXIS AGAINST HIV INFECTION [J].
Conway, Jessica M. ;
Konrad, Bernhard P. ;
Coombs, Daniel .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (02) :904-928
[4]   A stochastic model for internal HIV dynamics [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1084-1101
[5]   A stochastic model of AIDS and condom use [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :36-53
[6]   The end of AIDS: HIV infection as a chronic disease [J].
Deeks, Steven G. ;
Lewin, Sharon R. ;
Havlir, Diane V. .
LANCET, 2013, 382 (9903) :1525-1533
[7]   A stochastic SICA epidemic model for HIV transmission [J].
Djordjevic, Jasmina ;
Silva, Cristiana J. ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2018, 84 :168-175
[8]   Mathematical analysis of HIV/AIDS stochastic dynamic models [J].
Emvudu, Yves ;
Bongor, Danhree ;
Koina, Rodoumta .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (21-22) :9131-9151
[9]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[10]  
Hyunsoo K, 2019, CHAOS SOLITONS FRACT