Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I-V method

被引:51
作者
Lee, Young Gon [1 ]
Kang, Chang Goo [1 ]
Cho, Chunhum [2 ]
Kim, Yonghun [1 ]
Hwang, Hyeon Jun [1 ]
Lee, Byoung Hun [1 ,2 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju 500712, South Korea
[2] Gwangju Inst Sci & Technol, Dept Nanobio Mat & Elect, Kwangju 500712, South Korea
基金
新加坡国家研究基金会;
关键词
Compendex;
D O I
10.1016/j.carbon.2013.04.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Unstable characteristics of graphene field effect transistors (FETs) have generated concerns about the feasibility of graphene electronic devices. Two dominant mechanisms of instability, charge trapping and interfacial redox reaction, and their quantitative contributions were investigated for chemical vapor deposited graphene by analyzing the transient responses of the hysteretic characteristics in microseconds to milliseconds range. In contrast to previous reports emphasizing the role of the interfacial redox reaction, we have found that charge trapping at the interface is responsible for 78-87% of the hysteresis and that the interfacial redox reaction at the graphene/SiO2 interface contributes only 13-22%. Systematic analysis on the temperature and ambient dependence of instability suggest that graphene FETs can operate more reliably with a proper passivation to create an oxygen deficient environment. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 40 条
[1]   The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors [J].
Aguirre, Carla M. ;
Levesque, Pierre L. ;
Paillet, Matthieu ;
Lapointe, Francois ;
St-Antoine, Benoit C. ;
Desjardins, Patrick ;
Martel, Richard .
ADVANCED MATERIALS, 2009, 21 (30) :3087-+
[2]   Hysteresis in the resistance of a graphene device induced by charge modulation in the substrate [J].
Brant, J. C. ;
Leon, J. ;
Barbosa, T. C. ;
Araujo, E. N. D. ;
Archanjo, B. S. ;
Plentz, F. ;
Alves, E. S. .
APPLIED PHYSICS LETTERS, 2010, 97 (04)
[3]   Graphene-Silicon Schottky Diodes [J].
Chen, Chun-Chung ;
Aykol, Mehmet ;
Chang, Chia-Chi ;
Levi, A. F. J. ;
Cronin, Stephen B. .
NANO LETTERS, 2011, 11 (05) :1863-1867
[4]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[5]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[6]   Nonvolatile memory devices based on few-layer graphene films [J].
Doh, Yong-Joo ;
Yi, Gyu-Chul .
NANOTECHNOLOGY, 2010, 21 (10)
[7]   Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition [J].
Heo, J. ;
Chung, H. J. ;
Lee, Sung-Hoon ;
Yang, H. ;
Seo, D. H. ;
Shin, J. K. ;
Chung, U-In ;
Seo, S. ;
Hwang, E. H. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2011, 84 (03)
[8]   Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density [J].
Hwang, Jeong-Yuan ;
Kuo, Chun-Chiang ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
NANOTECHNOLOGY, 2010, 21 (46)
[9]   Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates [J].
Joshi, P. ;
Romero, H. E. ;
Neal, A. T. ;
Toutam, V. K. ;
Tadigadapa, S. A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (33)
[10]   The role of charge traps in inducing hysteresis: Capacitance-voltage measurements on top gated bilayer graphene [J].
Kalon, Gopinadhan ;
Shin, Young Jun ;
Truong, Viet Giang ;
Kalitsov, Alan ;
Yang, Hyunsoo .
APPLIED PHYSICS LETTERS, 2011, 99 (08)