Thermal conductivity of yttria-stabilized zirconia thin films with a zigzag microstructure

被引:4
作者
Amaya, C. [1 ,2 ]
Prias-Barragan, J. J. [3 ]
Aperador, W. [4 ]
Hernandez-Landaverde, M. A. [5 ]
Ramirez-Cardona, M. [6 ]
Caicedo, J. C. [7 ]
Rodriguez, L. A. [1 ,8 ]
Snoeck, E. [8 ]
Gomez, M. E. [1 ,9 ]
Zambrano, G. [1 ]
机构
[1] Univ Valle, Dept Phys, Calle 13 100-00, Cali 25360, Colombia
[2] ASTIN SENA, CDT, Dev Mat & Prod Res Grp, Calle 52,2Bis 15, Cali, Colombia
[3] Univ Quindio, Interdisciplinary Inst Sci & Elect Instrumentat T, Carrera 15,Calle 12 Norte, Armenia 630001, Colombia
[4] Univ Mil Nueva Granada, Sch Engn, Bogota, Colombia
[5] Ctr Invest & Estudios Avanzados IPN, Unidad Queretaro, Libramiento Norponiente 2000, Queretaro 76230, Qro, Mexico
[6] UAEH, Cto Invest Ciencias Tierra & Mat, Mineral De La Reforma 42184, Hgo, Mexico
[7] Univ Valle, Powder Met & Proc Solid Recycled Res Grp, Tribol, Calle 13 100-00, Cali 25360, Colombia
[8] CNRS, CEMES, 29 Rue Jeanne Marvig,BP 94347, F-31055 Toulouse, France
[9] Univ Valle, CENM, Calle 13 100-00, Cali 25360, Colombia
关键词
GLANCING ANGLE DEPOSITION; YSZ COATINGS; GROWTH;
D O I
10.1063/1.4990283
中图分类号
O59 [应用物理学];
学科分类号
摘要
Yttria-stabilized zirconia (YSZ) is the most common material used as a thermal barrier in several engineering applications. In order to improve the insulator potential of these thin films, an obliqueangle deposition approach was used to grow YSZ with tilted columnar structures. Initially, the period (n) was defined as the repetition unit composed of two layers each with different columnar growth directions, and then, n was increased (n = 1, 2, 10, 30, and 50), keeping constant the total thickness (similar to 3.50 mu m). The influence of (n) on the structure, roughness, grain size, microstructure, and thermal conductivity (j) of thin films deposited was determined by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy, and hot-plate technique, respectively. For all the samples, XRD patterns indicate the presence of the characteristic 8YSZ tetragonal phase peaks. Through AFM analysis, it was established that the roughness of the films deposited decreases from (4.0 +/- 0.6) to (2.0 +/- 6 0.6) nm when n is increased. Cross-sectional images recorded by SEM corroborate the formation of marked interfaces when growth direction changes occur, allowing to identify a multilayer system with a "zigzag" microstructure and an evolution towards more refined and isolated columns. Moreover, the SEM images reveal that for n = 10, 30, 50, and 70, the growth direction of the column is perpendicular to the substrate plane, losing its tilted form and the "zigzag" behavior becomes intracolumnar, reaching nanometer scale. Finally, analyses by hot-plate technique for different n repetition units showed that the thermal conductivity of YSZ films decreases from 0.151 W/m K to 0.064 W/m K, establishing the direct influence of the "zigzag" microstructure on the j value. This study shows the potential of growing YSZ thin films by oblique-angle deposition as an effective method to improving the thermal insulator potential of this material. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 24 条
[1]   A non-destructive method for determination of thermal conductivity of YSZ coatings deposited on Si substrates [J].
Amaya, C. ;
Caicedo, J. C. ;
Yanez-Limon, J. M. ;
Vargas, R. A. ;
Zambrano, G. ;
Gomez, M. E. ;
Prieto, P. .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 136 (2-3) :917-924
[2]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[3]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[4]   Combustion Flame Spray of CoNiCrAlY & YSZ coatings [J].
Fanicchia, F. ;
Axinte, D. A. ;
Kell, J. ;
McIntyre, R. ;
Brewster, G. ;
Norton, A. D. .
SURFACE & COATINGS TECHNOLOGY, 2017, 315 :546-557
[5]  
Gonzalez de la Cruz G., 2000, SUPERFICIES VACIO, V10, P40
[6]   Low thermal conductivity vapor deposited zirconia microstructures [J].
Hass, DD ;
Slifka, AJ ;
Wadley, HNG .
ACTA MATERIALIA, 2001, 49 (06) :973-983
[7]   LOW-ENERGY (-100 EV) ION IRRADIATION DURING GROWTH OF TIN DEPOSITED BY REACTIVE MAGNETRON SPUTTERING - EFFECTS OF ION FLUX ON FILM MICROSTRUCTURE [J].
HULTMAN, L ;
MUNZ, WD ;
MUSIL, J ;
KADLEC, S ;
PETROV, I ;
GREENE, JE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1991, 9 (03) :434-438
[8]   DEPENDENCE OF GEOMETRIC MAGNETIC ANISOTROPY IN THIN IRON FILMS [J].
KNORR, TG ;
HOFFMAN, RW .
PHYSICAL REVIEW, 1959, 113 (04) :1039-1046
[9]  
Lakhtakia A., 2005, Sculptured Thin Films: Nanoengineered Mor- phology and Optics
[10]   Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films [J].
Lintymer, J ;
Gavoille, J ;
Martin, N ;
Takadoum, J .
SURFACE & COATINGS TECHNOLOGY, 2003, 174 :316-323