Effect of Grafting RGD and BMP-2 Protein-Derived Peptides to a Hydrogel Substrate on Osteogenic Differentiation of Marrow Stromal Cells

被引:158
作者
He, Xuezhong [1 ]
Ma, Junyu [1 ]
Jabbari, Esmaiel [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Biomimet Mat & Tissue Engn Labs, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1021/la802447v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide-co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62 +/- 0.37 and 5.2 +/- 0.6 pmol/cm(2), respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization of BMS cells. These findings are potentially useful in developing engineered scaffolds for bone regeneration.
引用
收藏
页码:12508 / 12516
页数:9
相关论文
共 75 条
[1]   Incorporation of pseudoproline derivatives allows the facile synthesis of human IAPP, a highly amyloidogenic and aggregation-prone polypeptide [J].
Abedini, A ;
Raleigh, DP .
ORGANIC LETTERS, 2005, 7 (04) :693-696
[2]   Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly [J].
Bailey, AJ ;
Knott, L .
EXPERIMENTAL GERONTOLOGY, 1999, 34 (03) :337-351
[3]   Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes [J].
Bashur, Chris A. ;
Dahlgren, Linda A. ;
Goldstein, Aaron S. .
BIOMATERIALS, 2006, 27 (33) :5681-5688
[4]   BMP binding peptide: a BMP-2 enhancing factor deduced from the sequence of native bovine bone morphogenetic protein/non-collagenous protein [J].
Behnam, K ;
Phillips, ML ;
Sliva, JDP ;
Brochmann, EJ ;
Duarte, MEL ;
Murray, SS .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2005, 23 (01) :175-180
[5]   Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate) [J].
Bozukova, Dimitriya ;
Pagnoulle, Christophe ;
De Pauw-Gillet, Marie-Claire ;
Ruth, Nadia ;
Jerome, Robert ;
Jerome, Christine .
LANGMUIR, 2008, 24 (13) :6649-6658
[6]   BONE BIOLOGY .2. FORMATION, FORM, MODELING, REMODELING, AND REGULATION OF CELL-FUNCTION [J].
BUCKWALTER, JA ;
GLIMCHER, MJ ;
COOPER, RR ;
RECKER, R .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1995, 77A (08) :1276-1289
[7]   Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers [J].
Chen, JS ;
Altman, GH ;
Karageorgiou, V ;
Horan, R ;
Collette, A ;
Volloch, V ;
Colabro, T ;
Kaplan, DL .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (02) :559-570
[8]   Multifunctional mixed SAMs that promote both cell adhesion and noncovalent DNA immobilization [J].
Choi, Siyoung ;
Murphy, William L. .
LANGMUIR, 2008, 24 (13) :6873-6880
[9]   Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels [J].
Connelly, John T. ;
Garcia, Andres J. ;
Levenston, Marc E. .
BIOMATERIALS, 2007, 28 (06) :1071-1083
[10]   SKELETAL REPAIR BY IN-SITU FORMATION OF THE MINERAL PHASE OF BONE [J].
CONSTANTZ, BR ;
ISON, IC ;
FULMER, MT ;
POSER, RD ;
SMITH, ST ;
VANWAGONER, M ;
ROSS, J ;
GOLDSTEIN, SA ;
JUPITER, JB ;
ROSENTHAL, DI .
SCIENCE, 1995, 267 (5205) :1796-1799