Legendre-transform-based fast sweeping methods for static Hamilton-Jacobi equations on triangulated meshes

被引:37
作者
Kao, Chiu-Yen [2 ]
Osher, Stanley [3 ]
Qian, Jianliang [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; Fast sweeping methods; Monotone schemes; Legendre transforms; Godunov numerical Hamiltonians;
D O I
10.1016/j.jcp.2008.08.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new sweeping algorithm which utilizes the Legendre transform of the Hamiltonian on triangulated meshes. The algorithm is a general extension of the previous proposed algorithm by Kao et al. [CY. Kao, S.J. Osher, Y.-H. Tsai, Fast sweeping method for static Hamilton-Jacobi equations, SIAM J. Numer. Anal. 42 (2005) 2612-2632]. The algorithm yields the numerical solution at a grid point using only its one-ring neighboring grid values and is easy to implement numerically. The minimization that is related to the Legendre transform in the sweeping algorithm can either be solved analytically or numerically. The scheme is shown to be monotone and consistent. We illustrate the efficiency and accuracy of the new method with several numerical examples in two and three dimensions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:10209 / 10225
页数:17
相关论文
共 27 条
[1]  
[Anonymous], 2001, J COMPUT PHYS
[2]  
[Anonymous], 1996, LEVEL SET METHODS
[3]   THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
OSHER, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :344-351
[4]   Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle [J].
Bornemann, Folkmar ;
Rasch, Christian .
COMPUTING AND VISUALIZATION IN SCIENCE, 2006, 9 (02) :57-69
[5]   Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control [J].
Boué, M ;
Dupuis, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :667-695
[6]   Weighted distance maps computation on parametric three-dimensional manifolds [J].
Bronstein, Alexander M. ;
Bronstein, Michael M. ;
Kimmel, Ron .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) :771-784
[7]   Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension [J].
Cecil, TC ;
Osher, SJ ;
Qian, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) :458-473
[8]  
Cockburn B, 2002, SIAM PROC S, P67
[9]   Two new methods for simulating photolithography development in 3D [J].
Helmsen, J ;
Puckett, EG ;
Colella, P ;
Dorr, M .
OPTICAL MICROLITHOGRAPHY IX, 1996, 2726 :253-261
[10]  
JACKOWSKI M, MICCAI