3D printed cellulose nanocrystal composites through digital light processing

被引:69
作者
Li, Vincent Chi-Fung [1 ,2 ]
Kuang, Xiao [3 ]
Mulyadi, Arie [1 ,2 ]
Hamel, Craig M. [1 ,3 ]
Deng, Yulin [1 ,2 ]
Qi, H. Jerry [1 ,3 ]
机构
[1] Georgia Inst Technol, Renewable Bioprod Inst, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Cellulose nanocrystals; Digital light processing; 3D printing; CNC composites; SURFACE MODIFICATION; NANOCOMPOSITES; REINFORCEMENT; EVOLUTION; FIBERS; FILMS;
D O I
10.1007/s10570-019-02353-9
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Cellulose Nanocrystals (CNC) have received significant attention due to their high Young's modulus, high strength, biocompatibility, and renewability. These properties make them ideal as a reinforcement phase for polymer composites. However, typical composite processing techniques have limitation in efficiently fabricating composites with different shapes. Inspired by the emerging technology of 3D printing, this work utilized the digital light processing (DLP) 3D printing approach to fabricate CNC reinforced poly (ethylene glycol) diacrylate (PEGDA) glycerol composites. To improve CNC compatibility with PEGDA matrix, 1,3-diglycerolate diacrylate (DiGlyDA) that has a similar chemical structure but also has hydroxyl groups was blended with PEGDA. The dispersibility of CNC was characterized by the Halpin-Tsai model and polarized light microscopy. Mechanical testing results indicated that mechanical properties of DLP 3D printed composites were improved by CNC incorporation. Furthermore, curing layer thickness during DLP 3D printing can also be used to tune the composites' mechanical and water swelling properties. Complex 3D CNC composites structures were also successfully printed by the DLP 3D printing with great fidelity. This versatile approach of controlling composite's properties and structure using CNC and DLP 3D printing can be exploited to further advance the utilization of cellulosic materials toward biomedical and many other applications.
引用
收藏
页码:3973 / 3985
页数:13
相关论文
共 73 条
[1]   Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites [J].
Abdelmouleh, M ;
Boufi, S ;
Belgacem, MN ;
Dufresne, A ;
Gandini, A .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (03) :974-984
[2]   Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals [J].
Ben Mabrouk, Ayman ;
Ferraria, Ana Maria ;
Botelho do Rego, Ana Maria ;
Boufi, Sami .
CELLULOSE, 2013, 20 (04) :1711-1723
[3]   Additive manufacturing methods and modelling approaches: a critical review [J].
Bikas, H. ;
Stavropoulos, P. ;
Chryssolouris, G. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 83 (1-4) :389-405
[4]   Tuning the Iridescence of Chiral Nematic Cellulose Nanocrystal Films with a Vacuum-Assisted Self-Assembly Technique [J].
Chen, Qi ;
Liu, Ping ;
Nan, Fuchun ;
Zhou, Lijuan ;
Zhang, Jianming .
BIOMACROMOLECULES, 2014, 15 (11) :4343-4350
[5]   Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents [J].
Cheung, Clement C. Y. ;
Giese, Michael ;
Kelly, Joel A. ;
Hamad, Wadood Y. ;
MacLachlan, Mark J. .
ACS MACRO LETTERS, 2013, 2 (11) :1016-1020
[6]   3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique [J].
Chiappone, Annalisa ;
Fantino, Erika ;
Roppolo, Ignazio ;
Lorusso, Massimo ;
Manfredi, Diego ;
Fino, Paolo ;
Pirri, Candido Fabrizio ;
Calignano, Flaviana .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5627-5633
[7]   Advances in 2D/3D Printing of Functional Nanomaterials and Their Applications [J].
Choi, Jea-Young ;
Das, Sayantan ;
Theodore, N. David ;
Kim, Inho ;
Honsberg, Christiana ;
Choi, Hyung Woo ;
Alford, T. L. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (04) :P3001-P3009
[8]   High performance polymer nanocomposites for additive manufacturing applications [J].
de Leon, Al C. ;
Chen, Qiyi ;
Palaganas, Napolabel B. ;
Palaganas, Jerome O. ;
Manapat, Jill ;
Advincula, Rigoberto C. .
REACTIVE & FUNCTIONAL POLYMERS, 2016, 103 :141-155
[9]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33
[10]  
Eichhorn SJ, 2001, J MATER SCI, V36, P25