Toroidal and level 0 Uq sln+1 actions on Uq gln+1 modules

被引:13
作者
Miki, K [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
D O I
10.1063/1.533078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
(1) Utilizing a braid group action on a completion of U-q(<(sl(n+1))over cap>), an algebra homomorphism from the toroidal algebra U-q(sl(n+1,tor))( n greater than or equal to 2) to a completion of U-q(<(gl(n+1))over cap>) is obtained. (2) The toroidal actions by Saito induces a level 0 U-q'(<(sl(n+1))over cap>) action on level 1 integrable highest weight modules of U-q(<(sl(n+1))over cap>). Another level 0 U-q'(<(sl(n+1))over cap>) action was defined by Jimbo et al., in the case n=1. Using the fact that the intertwiners of U-q(<(sl(n+1))over cap>) modules are intertwiners of toroidal modules for an appropriate comultiplication, the relation between these two level 0 U-q'(<(sl(n+1))over cap>) actions is clarified. (C) 1999 American Institute of Physics. [S0022-2488(99)04806-9].
引用
收藏
页码:3191 / 3210
页数:20
相关论文
共 19 条
[1]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[2]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628
[3]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[4]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[5]   Drinfeld comultiplication and vertex operators [J].
Ding, J ;
Iohara, K .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (01) :1-13
[6]  
DING J, MATH9804139
[7]  
Drinfeld V. G., 1988, Soviet Math. Dokl, V296, P212
[8]  
Ginzburg V, 1995, MATH RES LETT, V2, P147
[9]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[10]  
JIMBO M, 1994, UNPUB P STAT MECH QU