A von Neumann alternating method for finding common solutions to variational inequalities

被引:33
作者
Censor, Yair [2 ]
Gibali, Aviv [1 ]
Reich, Simeon [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Technion, Haifa, Israel
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
基金
以色列科学基金会;
关键词
Alternating method; Averaged operator; Fixed point; Hilbert space; Inverse strongly monotone operator; Metric projection; Nonexpansive operator; Resolvent; Variational inequality; NONEXPANSIVE-MAPPINGS; WEAK-CONVERGENCE;
D O I
10.1016/j.na.2012.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By modifying von Neumann's alternating projections algorithm, we obtain an alternating method for solving the recently introduced Common Solutions to Variational Inequalities Problem (CSVIP). For simplicity, we mainly confine our attention to the two-set CSVIP, which entails finding common solutions to two unrelated variational inequalities in Hilbert space. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4596 / 4603
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 2003, SPRINGER SERIES OPER, DOI DOI 10.1007/978-0-387-21815-16
[2]  
[Anonymous], 1983, Linear and Multilinear Algebra
[3]  
Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
[4]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[5]   The asymptotic behavior of the composition of two resolvents [J].
Bauschke, HH ;
Combettes, PL ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (02) :283-301
[6]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738
[7]   On the method of alternating resolvents [J].
Boikanyo, Oganeditse A. ;
Morosanu, Gheorghe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (15) :5147-5160
[8]  
Bregman L.M., 1965, Dokl. Akad. Nauk, V162, P688
[9]  
Bruck R. E., 1977, Houston J. Math., V3, P459
[10]   Iterative projection onto convex sets using multiple Bregman distances [J].
Byrne, C .
INVERSE PROBLEMS, 1999, 15 (05) :1295-1313