Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type

被引:17
作者
Bungert, Leon [1 ]
Burger, Martin [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
基金
欧盟地平线“2020”;
关键词
Gradient flow; Homogeneous functionals; Nonlinear evolution equations; Asymptotic profile; Extinction profile; Nonlinear eigenfunctions; Asymptotic behavior; Extinction time; Convergence rates; POROUS-MEDIUM EQUATION; DIFFUSION EQUATION; DIRICHLET PROBLEM; EIGENVALUE; CONVERGENCE; BEHAVIOR; INFINITY;
D O I
10.1007/s00028-019-00545-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the gradient flow of absolutelyp-homogeneous convex functionals on a Hilbert space, which we show to exhibit finite (p<2 We give upper bounds for the finite extinction time and establish sharp convergence rates of the flow. Moreover, we study next order asymptotics and prove that asymptotic profiles of the solution are eigenfunctions of the subdifferential operator of the functional. To this end, we compare with solutions of an ordinary differential equation which describes the evolution of eigenfunction under the flow. Our work applies, for instance, to local and non-local versions of PDEs likep-Laplacian evolution equations, the porous medium equation, and fast diffusion equations, herewith generalizing many results from the literature to an abstract setting. We also demonstrate how our theory extends to general homogeneous evolution equations which are not necessarily a gradient flow. Here, we discover an interesting integrability condition which characterizes whether or not asymptotic profiles are eigenfunctions.
引用
收藏
页码:1061 / 1092
页数:32
相关论文
共 43 条
[1]   LOWER BOUND ESTIMATES AND SEPARABLE SOLUTIONS FOR HOMOGENEOUS EQUATIONS OF EVOLUTION IN BANACH-SPACE [J].
ALIKAKOS, ND ;
ROSTAMIAN, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 43 (03) :323-344
[2]   A characterization of convex calibrable sets in IRN [J].
Alter, F ;
Caselles, V ;
Chambolle, A .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :329-366
[3]   A nonlocal p-Laplacian evolution equation with Neumann boundary conditions [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02) :201-227
[4]   Some qualitative properties for the total variation flow [J].
Andreu, F ;
Caselles, V ;
Diaz, JI ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :516-547
[5]  
Andreu F., 2004, PROGR MATH, V233
[6]  
[Anonymous], 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.1553385
[7]  
[Anonymous], SHAPE PRESERVING FLO
[8]  
[Anonymous], APPL ANAL
[9]  
BERRYMAN JG, 1980, ARCH RATION MECH AN, V74, P379, DOI 10.1007/BF00249681
[10]  
Blanc P, 2019, ARXIV190101052