Asymptotic Hausdorff dimensions of Cantor sets associated with an asymptotically non-hyperbolic family

被引:4
作者
Fan, AH [1 ]
Jiang, YP
Wu, J
机构
[1] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
[2] Univ Picardie, CNRS, UMR 6140, LAMFA, F-80039 Amiens, France
[3] CUNY Queens Coll, Dept Math, Flushing, NY 11367 USA
[4] CUNY, Grad Sch, Dept Math, New York, NY 10016 USA
[5] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
D O I
10.1017/S014338570500009X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The geometry of Cantor systems associated with an asymptotically non-hyperbolic family (f(epsilon))0 <=epsilon <=epsilon(0) was studied by Jiang (Geometry of Cantor systems. Trans. Amer Math. Soc. 351 (1999), 1975-1987). By applying the geometry studied there, we prove that the Hausdorff dimension of the maximal invariant set of f(epsilon), behaves like 1-K epsilon(1/gamma) asymptotically, as was conjectured by Jiang (Generalized Ulam-von Neumann transformations. PhD Thesis, CUNY Graduate Center, May 1999).
引用
收藏
页码:1799 / 1808
页数:10
相关论文
共 11 条
[1]  
Bodart O, 1996, FUND MATH, V151, P121
[2]   Parabolic implosion and Hausdorff dimension [J].
Douady, A ;
Sentenac, P ;
Zinsmeister, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :765-772
[3]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[4]   On Markov-Mandelbrot martingales [J].
Fan, AH .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (10) :967-982
[5]  
Jiang Y., 1990, THESIS CUNY
[6]  
JIANG Y, 1996, ADV SER NONLIN DYNAM, V10
[7]   Geometry of Cantor systems [J].
Jiang, YP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (05) :1975-1987
[8]   CERTAIN MARTINGALES OF MANDELBROT,B [J].
KAHANE, JP ;
PEYRIERE, J .
ADVANCES IN MATHEMATICS, 1976, 22 (02) :131-145
[9]   GROUND-STATE AND LOWEST EIGENVALUE OF THE LAPLACIAN FOR NONCOMPACT HYPERBOLIC SURFACES [J].
PIGNATARO, T ;
SULLIVAN, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (04) :529-535
[10]  
Ruelle David, 1982, Ergodic Theory Dynam. Systems, V2, P99, DOI 10.1017/s0143385700009603