Gabor systems and almost periodic functions

被引:8
作者
Boggiatto, Paolo [1 ]
Fernandez, Carmen [2 ]
Galbis, Antonio [2 ]
机构
[1] Univ Turin, Dept Math, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Valencia, Dept Anal Matemat, Doctor Moliner 50, E-46100 Valencia, Spain
关键词
Frames; Gabor systems; Almost-periodic functions; AP-frames; WINDOWED FOURIER-TRANSFORM; WAVELET TRANSFORM; FRAMES;
D O I
10.1016/j.acha.2015.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by results of Kim and Ron, given a Gabor frame in L-2(R), we determine a non-countable generalized frame for the non-separable space AP(2)(R) of the Besicovic almost periodic functions. Gabor type frames for suitable separable subspaces of AP(2)(R) are constructed. We show furthermore that Bessel-type estimates hold for the AP norm with respect to a countable Gabor system using suitable almost periodic norms of sequences. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:65 / 87
页数:23
相关论文
共 23 条
[1]   CONTINUOUS FRAMES IN HILBERT-SPACE [J].
ALI, ST ;
ANTOINE, JP ;
GAZEAU, JP .
ANNALS OF PHYSICS, 1993, 222 (01) :1-37
[2]  
[Anonymous], 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[3]  
[Anonymous], 2016, Appl. Numer. Harmon. Anal
[4]  
[Anonymous], 2009, Almost periodic oscillations and waves
[5]  
[Anonymous], 2002, SAMPL THEORY SIGNAL
[6]  
Besicovitch A.S., 1954, Almost Periodic Functions, VVolume 4
[7]  
Corduneanu C., 1989, ALMOST PERIODIC FUNC
[8]   AMALGAMS OF LP AND LQ [J].
FOURNIER, JJF ;
STEWART, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 13 (01) :1-21
[9]  
Gabardo J.-P., 2003, ADV COMPUT ANAL, V16, P174
[10]   Some remarks on "On the windowed Fourier transform and wavelet transform of almost periodic functions," by JR. Partington and B. Unalmi [J].
Galindo, F .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) :174-181