The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways

被引:93
作者
Wathugala, Deepthi L. [1 ]
Hemsley, Piers A. [1 ]
Moffat, Caroline S. [1 ]
Cremelie, Pieter [1 ]
Knight, Marc R. [1 ]
Knight, Heather [1 ]
机构
[1] Univ Durham, Durham Ctr Crop Improvement Technol, Sch Biol & Biomed Sci, Durham DH1 3LE, England
基金
英国生物技术与生命科学研究理事会;
关键词
ERF5; jasmonic acid (JA); MED16; Mediator; Pseudomonas syringae; salicylic acid (SA); SFR6; UV-C; ARABIDOPSIS TRANSCRIPTION FACTOR; LOW-TEMPERATURE; FREEZING TOLERANCE; PLANT DEFENSE; DISEASE RESISTANCE; PSEUDOMONAS-SYRINGAE; ULTRAVIOLET-LIGHT; COLD-ACCLIMATION; FUNGAL PATHOGENS; CIRCADIAN CLOCK;
D O I
10.1111/j.1469-8137.2012.04138.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only.
引用
收藏
页码:217 / 230
页数:14
相关论文
共 64 条
[1]  
Applied Biosystems, 2007, US B APPL BIOS REAL
[2]   Cell numbers and leaf development in Arabidopsis:: a functional analysis of the STRUWWELPETER gene [J].
Autran, D ;
Jonak, C ;
Belcram, K ;
Beemster, GTS ;
Kronenberger, J ;
Grandjean, O ;
Inzé, D ;
Traas, J .
EMBO JOURNAL, 2002, 21 (22) :6036-6049
[3]   Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit [J].
Backstrom, Stefan ;
Elfving, Nils ;
Nilsson, Robert ;
Wingsle, Gunnar ;
Bjorklund, Stefan .
MOLECULAR CELL, 2007, 26 (05) :717-729
[4]   Role of plant hormones in plant defence responses [J].
Bari, Rajendra ;
Jones, Jonathan D. G. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :473-488
[5]  
Berrocal-Lobo M, 2004, MOL PLANT MICROBE IN, V17, P763, DOI 10.1094/MPMI.2004.17.7.763
[6]   Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway [J].
Besteiro, Marina A. Gonzalez ;
Bartels, Sebastian ;
Albert, Andreas ;
Ulm, Roman .
PLANT JOURNAL, 2011, 68 (04) :727-737
[7]   Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex [J].
Bourbon, Henri-Marc .
NUCLEIC ACIDS RESEARCH, 2008, 36 (12) :3993-4008
[8]   The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress [J].
Boyce, JM ;
Knight, H ;
Deyholos, M ;
Openshaw, MR ;
Galbraith, DW ;
Warren, G ;
Knight, MR .
PLANT JOURNAL, 2003, 34 (04) :395-406
[9]   A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis [J].
Brown, RL ;
Kazan, K ;
McGrath, KC ;
Maclean, DJ ;
Manners, JM .
PLANT PHYSIOLOGY, 2003, 132 (02) :1020-1032
[10]   Regulation of flowering time by light quality [J].
Cerdán, PD ;
Chory, J .
NATURE, 2003, 423 (6942) :881-885