Electrochemical study on different layers of graphene based TiO2/graphene composites as an anode for lithium-ion batteries

被引:6
作者
Geng, Chun-Yan [1 ]
Yu, Jin [1 ]
Shi, Fa-Nian [1 ]
机构
[1] Shenyang Univ Technol, Coll Sci, Shenyang 110870, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode material; TiO2; Graphene; Layers; HIGH-PERFORMANCE ANODE; LI-ION; OXIDE; NANOCOMPOSITES; NANOPARTICLES;
D O I
10.1007/s11164-019-03799-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to explore the influence of the layers of graphene on the lithium-ion battery composites, to increase the electroconductivity of TiO2 and electrochemistry performance of materials, titanium dioxide/graphene composites (TiO2/rGO) were synthesized from different layers of graphene oxide (GO) and TiO2 using the hydrothermal method. The morphology and structure were studied by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. Their electrochemistry performance was tested through galvanostatic charge-discharge, cyclic voltammetry and AC impedance (EIS). The results indicate that the TiO2/rGO (few-layers) electrode exhibited higher electrochemical performance than that of the TiO2/rGO (multi-layers) electrode regardless of the rate. At the current density of 100mAg(-1), the discharge capacity of TiO2/rGO (few-layers) was 322.3mAhg(-1) after 100 cycles, which was higher than TiO2/rGO (multi-layers) (240.2mAhg(-1)). TiO2/rGO (few-layers) showed reversible capacity values of 285.8mAhg(-1) and 235.6mAhg(-1) at current rates of 160mAg(-1) and 320mAg(-1), respectively, showing better rate performance. [GRAPHICS] .
引用
收藏
页码:3409 / 3424
页数:16
相关论文
共 50 条
  • [31] Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries
    Qiu, Jingxia
    Lai, Chao
    Wang, Yazhou
    Li, Sheng
    Zhang, Shanqing
    CHEMICAL ENGINEERING JOURNAL, 2014, 256 : 247 - 254
  • [32] Graphene-encapsulated Cu/TiO2 nanotubes anode materials for lithium/sodium ion batteries
    Wang, Qiufen
    Zhang, Chengli
    Miao, Juan
    Zhang, Yanlei
    Zhao, Caiyun
    Zhang, Zhilin
    Wen, Tao
    Shen, Nan
    MATERIALS LETTERS, 2019, 240 : 267 - 270
  • [33] Three-dimensional macroporous graphene/TiO2 nanocomposite as anode material for lithium ion batteries
    Li, Jia-Jie
    Zhang, Yu-Min
    Han, Jie-Cai
    Zhou, Ji-Gang
    Zhang, Zhi-Hua
    Liu, Jun
    Song, Bo
    MATERIALS EXPRESS, 2015, 5 (02) : 83 - 94
  • [34] Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries
    Choi, Min Gyu
    Lee, Young-Gi
    Kim, Kwang Man
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2010, 48 (03): : 283 - 291
  • [35] Preparation and electrochemical performance of silicon@graphene aerogel composites for lithium-ion batteries
    Tang, Fangqi
    Jiang, Tingting
    Tan, Yu
    Xu, Xinyi
    Zhou, Yingke
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [36] The Facile Synthesis of SnSb/Graphene Composites and Their Enhanced Electrochemical Performance for Lithium-ion Batteries
    Song, Shuyan
    Huo, Pengwei
    Fan, Weiqiang
    Shi, Weidong
    Yan, Yongsheng
    SCIENCE OF ADVANCED MATERIALS, 2013, 5 (12) : 1801 - 1806
  • [37] Nanoengineering mesoporous graphene-based anatase/bronze TiO2 heterostructures for pseudocapacitance-enhanced lithium-ion batteries
    Ni, Ling
    Wang, Runwei
    Fu, Yifang
    Wang, Hongbin
    Liu, Wenbo
    Zhu, Liangkui
    Qiu, Shilun
    Zhang, Zongtao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 683 - 692
  • [38] TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries
    Fu, Yuan-Xiang
    Dai, Yao
    Pei, Xian-Yinan
    Lyu, Shu-Shen
    Heng, Yi
    Mo, Dong-Chuan
    APPLIED SURFACE SCIENCE, 2019, 497
  • [39] Phenolic formaldehyde resin/graphene composites as lithium-ion batteries anode
    Wang, Lili
    Liu, Yuangang
    Chong, Chuanbin
    Wang, Jing
    Shi, Zhiqiang
    Pan, Jie
    MATERIALS LETTERS, 2016, 170 : 217 - 220
  • [40] TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries
    Wang Qian-Wen
    Du Xian-Feng
    Chen Xi-Zi
    Xu You-Long
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (08) : 1437 - 1451