Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis

被引:81
|
作者
Zhao, Qiang [1 ]
Xiang, Xiaohua [2 ]
Liu, Dan [1 ]
Yang, Aiguo [1 ]
Wang, Yuanying [1 ]
机构
[1] Chinese Acad Agr Sci, Tobacco Res Inst, Qingdao, Peoples R China
[2] Hainan Cigar Inst, Haikou, Hainan, Peoples R China
来源
基金
中国博士后科学基金;
关键词
NtbHLH123; NtCBF pathway; reactive oxygen species (ROS); transcriptional regulation; cold stress; Nicotiana tabacum; LOOP-HELIX PROTEIN; FREEZING TOLERANCE; GENE-EXPRESSION; GENOME-WIDE; LOW-TEMPERATURE; ARABIDOPSIS; ACCLIMATION; RICE; RESPONSES; FAMILY;
D O I
10.3389/fpls.2018.00381
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cold stress is a major environmental factor that impairs plant growth and development, geographic distribution, and crop productivity. The C-repeat binding factor (CBF) regulatory pathway has an essential role in response to cold stress. Here, we characterized a bHLH transcription factor from Nicotiana tabacum, NtbHLH123, in response to cold stress (4 degrees C). Overexpression of NtbHLH123 enhanced cold tolerance in transgenic tobacco plants. Based on yeast one-hybrid, chromatin immunoprecipitation PCR, and transient expression analysis assays, NtbHLH123 binds directly to the G-box/E-box motifs in the promoter of the NtCBF genes and positively regulates their expression. Furthermore, NtbHLH123-overexpressing plants showed lower electrolyte leakage, reduced malondialdehyde contents, H2O2 and reactive oxygen species (ROS) accumulation under cold stress, which contributed to alleviating oxidative damage to the cell membrane after cold stress treatment. And NtbHLH123 increased stress tolerance by improving the expression of a number of abiotic stress-responsive genes to mediate the ROS scavenging ability and other stress tolerance pathways. Taken together, we present a model suggesting that NtbHLH123 is a transcriptional activator that functions as a positive regulator of cold tolerance by activating NtCBF, ROS scavenging-related, and stress-responsive genes.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] AlRab7 from Aeluropus lagopoides ameliorates ion toxicity in transgenic tobacco by regulating hormone signaling and reactive oxygen species homeostasis
    Agarwal, Parinita
    Baraiya, Bhagirath M.
    Joshi, Priyanka S.
    Patel, Monika
    Parida, Asish K.
    Agarwal, Pradeep K.
    PHYSIOLOGIA PLANTARUM, 2021, 173 (04) : 1448 - 1462
  • [42] Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress
    Babitha, K. C.
    Vemanna, Ramu S.
    Nataraja, Karaba N.
    Udayakumar, M.
    PLOS ONE, 2015, 10 (09):
  • [43] An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes
    Vishal Sharma
    Parul Goel
    Sanjay Kumar
    Anil Kumar Singh
    Plant Cell Reports, 2019, 38 : 221 - 241
  • [44] Modulating reactive oxygen species and ion homeostasis for combined salt and cadmium stress tolerance in Brassica campestris: : The role of beneficial microbes
    Hasanuzzaman, Mirza
    Alam, Md. Mahabub
    Naz, Farha
    Rummana, Samiha
    Siddika, Ayesha
    Sultana, Abida
    Sinthi, Faomida
    Prasad, P. V. Vara
    PLANT STRESS, 2024, 14
  • [45] An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes
    Sharma, Vishal
    Goel, Parul
    Kumar, Sanjay
    Singh, Anil Kumar
    PLANT CELL REPORTS, 2019, 38 (02) : 221 - 241
  • [46] MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress
    Wang, Wei
    Liu, Dan
    Chen, Dongdong
    Cheng, Yingying
    Zhang, Xiaopei
    Song, Lirong
    Hu, Mengjiao
    Dong, Jie
    Shen, Fafu
    RNA BIOLOGY, 2019, 16 (03) : 362 - 375
  • [47] Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes
    Jin, Cong
    Huang, Xiao-San
    Li, Kong-Qing
    Yin, Hao
    Li, Lei-Ting
    Yao, Zheng-Hong
    Zhang, Shao-Ling
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [48] Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice
    Trung Viet Hoang
    Kieu Thi Xuan Vo
    Rahman, Md Mizanor
    Choi, Seok-Hyun
    Jeon, Jong-Seong
    PLANT SCIENCE, 2019, 289
  • [49] Regulating Signal Pathway Triggers Circular Reactive Oxygen Species Production to Augment Oxidative Stress with Enzyme-Activated Nanoparticles
    Bao, Benkai
    Yuan, Qiong
    Feng, Qian
    Li, Ling
    Li, Meiqi
    Tang, Yanli
    CCS CHEMISTRY, 2024, 6 (03): : 693 - 708
  • [50] β-Aminobutyric Acid Pretreatment Confers Salt Stress Tolerance in Brassica napus L. by Modulating Reactive Oxygen Species Metabolism and Methylglyoxal Detoxification
    Mahmud, Jubayer Al
    Hasanuzzaman, Mirza
    Khan, M. Iqbal R.
    Nahar, Kamrun
    Fujita, Masayuki
    PLANTS-BASEL, 2020, 9 (02):