A multilinear Lindenstrauss theorem

被引:23
作者
Acosta, MD
García, D
Maestre, M
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[2] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
关键词
multilinear mappings; polynomials; Banach spaces;
D O I
10.1016/j.jfa.2005.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the set of N-linear mappings on a product of N Banach spaces such that all their Arens extensions attain their norms (at the same element) is norm dense in the space of all bounded N-linear mappings. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:122 / 136
页数:15
相关论文
共 22 条
[1]   There is no bilinear Bishop-Phelps theorem [J].
Acosta, MD ;
Aguirre, FJ ;
Paya, R .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 93 :221-227
[2]  
Acosta MD, 1998, STUD MATH, V131, P155
[3]   Norm attaining bilinear forms on C*-algebras [J].
Alaminos, J ;
Payá, R ;
Villena, AR .
STUDIA MATHEMATICA, 2003, 157 (01) :47-56
[4]   Norm attaining bilinear forms on spaces of continuous functions [J].
Alaminos, J ;
Choi, YS ;
Kim, SG ;
Payá, R .
GLASGOW MATHEMATICAL JOURNAL, 1998, 40 :359-365
[5]   MULTILINEAR MAPPINGS OF NUCLEAR AND INTEGRAL TYPE [J].
ALENCAR, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (01) :33-38
[6]   THE ADJOINT OF A BILINEAR OPERATION [J].
ARENS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :839-848
[7]  
Arens R., 1951, MONATSH MATH, V55, P1
[8]  
ARON RM, 1978, B SOC MATH FR, V106, P3
[9]   On norm attaining polynomials [J].
Aron, RM ;
García, D ;
Maestre, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2003, 39 (01) :165-172
[10]  
ARON RM, 1995, LECT NOTES PURE APPL, V172, P19