Expansion of the Potential Region for Sustained Discharge of Non-aqueous Li-O2 Batteries Using an Oxygen-enriched Carbon Cathode

被引:6
作者
Nishioka, Kiho [1 ]
Morimoto, Kota [1 ]
Kusumoto, Takayoshi [1 ]
Harada, Takashi [2 ]
Hase, Yoko [3 ]
Kamiya, Kazuhide [1 ,2 ]
Nakanishi, Shuji [1 ,2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Osaka Univ, Res Ctr Solar Energy Chem, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[3] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Li-O-2; batteries; Lithium superoxide; Carbon electrode; O-2; REDUCTION; LI2O2; ELECTRODE; DEFECTS; PROMOTE; LIO2;
D O I
10.1246/cl.190070
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study demonstrates that surface modification of a carbon-paper cathode by oxygen functional groups expands the potential region for the sustained discharge of non-aqueous Li-O-2 batteries. Expansion of the potential region is considered to be due to a decrease in the over-potential for the oxygen reduction reaction and modification of the electrochemical adsorption isotherm of LiO2, which is an important adsorbed intermediate that determines the discharge capacity.
引用
收藏
页码:562 / 565
页数:4
相关论文
共 13 条
[1]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[2]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
[3]   Negative differential resistance as a critical indicator for the discharge capacity of lithium-oxygene batteries [J].
Hase, Yoko ;
Komori, Yasuhiro ;
Kusumoto, Takayoshi ;
Harada, Takashi ;
Seki, Juntaro ;
Shiga, Tohru ;
Kamiya, Kazuhide ;
Nakanishi, Shuji .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Positive Role of Surface Defects on Carbon Nanotube Cathodes in Overpotential and Capacity Retention of Rechargeable Lithium-Oxygen Batteries [J].
Huang, Shiting ;
Fan, Wugang ;
Guo, Xiangxin ;
Meng, Fanhao ;
Liu, Xuanyong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (23) :21567-21575
[5]  
Johnson L, 2014, NAT CHEM, V6, P1091, DOI [10.1038/NCHEM.2101, 10.1038/nchem.2101]
[6]   Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design [J].
Lyu, Zhiyang ;
Yang, Lijun ;
Luan, Yanping ;
Wang, Xiao Renshaw ;
Wang, Liangjun ;
Hu, Zehua ;
Lu, Junpeng ;
Xiao, Shuning ;
Zhang, Feng ;
Wang, Xizhang ;
Huo, Fengwei ;
Huang, Wei ;
Hu, Zheng ;
Chen, Wei .
NANO ENERGY, 2017, 36 :68-75
[7]   Potassium Ions Promote Solution-Route Li2O2 Formation in the Positive Electrode Reaction of Li-O2 Batteries [J].
Matsuda, Shoichi ;
Kubo, Yoshimi ;
Uosaki, Kohei ;
Nakanishi, Shuji .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (06) :1142-1146
[8]   Insights into the role of oxygen functional groups and defects in the rechargeable nonaqueous Li-O2 batteries [J].
Qian, Zhengyi ;
Sun, Baoyu ;
Du, Lei ;
Lou, Shuaifeng ;
Du, Chunyu ;
Zuo, Pengjian ;
Ma, Yulin ;
Cheng, Xinqun ;
Gao, YunZhi ;
Yin, Geping .
ELECTROCHIMICA ACTA, 2018, 292 :838-845
[9]   Oxygen-enriched carbon nanotubes as a bifunctional catalyst promote the oxygen reduction/evolution reactions in Li-O2 batteries [J].
Qin, Lei ;
Lv, Wei ;
Wei, Wei ;
Kang, Feiyu ;
Zhai, Dengyun ;
Yang, Quan-Hong .
CARBON, 2019, 141 :561-567
[10]   The Carbon Electrode in Nonaqueous Li-O2 Cells [J].
Thotiyl, Muhammed M. Ottakam ;
Freunberger, Stefan A. ;
Peng, Zhangquan ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) :494-500