Atomic-Scale Tomography: A 2020 Vision

被引:40
作者
Kelly, Thomas F. [1 ]
Miller, Michael K. [2 ]
Rajan, Krishna [3 ]
Ringer, Simon P. [4 ]
机构
[1] Cameca Instruments Inc, Madison, WI 53711 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[3] Iowa State Univ, Inst Combinatorial Discovery, Dept Mat Sci & Engn, Ames, IA 50011 USA
[4] Univ Sydney, Sch Aerosp Mech & Mechaton Engn, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
atomic-scale tomography; atom probe microscopy; atom probe tomography; integrated computational materials engineering; 2020; Vision; PRIMARY-WAVE FIELDS; DETECTION EFFICIENCY; ELECTRON MULTIPLIER; PHASE DETERMINATION; PROBE; MICROSCOPY; DIFFRACTION; LATTICE; RECONSTRUCTION; TRAJECTORIES;
D O I
10.1017/S1431927613000494
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic-scale tomography (AST) is defined and its place in microscopy is considered. Arguments are made that AST, as defined, would be the ultimate microscopy. The available pathways for achieving AST are examined and we conclude that atom probe tomography (APT) may be a viable basis for AST on its own and that APT in conjunction with transmission electron microscopy is a likely path as well. Some possible configurations of instrumentation for achieving AST are described. The concept of metaimages is introduced where data from multiple techniques are melded to create synergies in a multidimensional data structure. When coupled with integrated computational materials engineering, structure-properties microscopy is envisioned. The implications of AST for science and technology are explored.
引用
收藏
页码:652 / 664
页数:13
相关论文
共 59 条
[1]  
Billinge S. J. L., 2006, CYBERINFRASTRUCTURE
[2]   Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic [J].
Boll, T. ;
Al-Kassab, T. ;
Yuan, Y. ;
Liu, Z. G. .
ULTRAMICROSCOPY, 2007, 107 (09) :796-801
[3]  
Bunton J., 2010, Microsc Microanal, V16, P10, DOI DOI 10.1017/S1431927610060241
[4]   Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance [J].
Bunton, Joseph H. ;
Olson, Jesse D. ;
Lenz, Daniel R. ;
Kelly, Thomas F. .
MICROSCOPY AND MICROANALYSIS, 2007, 13 (06) :418-427
[5]   A METHOD FOR RECONSTRUCTING AND LOCATING ATOMS ON THE CRYSTAL-LATTICE IN 3-DIMENSIONAL ATOM-PROBE DATA [J].
CAMUS, PP ;
LARSON, DJ ;
KELLY, TF .
APPLIED SURFACE SCIENCE, 1995, 87-8 (1-4) :305-310
[6]   Background, status and future of the Transmission Electron Aberration-corrected Microscope project [J].
Dahmen, Ulrich ;
Erni, Rolf ;
Radmilovic, Velimir ;
Kisielowski, Christian ;
Rossell, Marta-Dacil ;
Denes, Peter .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1903) :3795-3808
[7]   Improvement of the detection efficiency of channel plate electron multiplier for atom probe application [J].
Deconihout, B ;
Gerard, P ;
Bouet, M ;
Bostel, A .
APPLIED SURFACE SCIENCE, 1996, 94-5 :422-427
[8]   Prospects for 3D, nanometer-resolution imaging by confocal STEM [J].
Einspahr, J. J. ;
Voyles, P. M. .
ULTRAMICROSCOPY, 2006, 106 (11-12) :1041-1052
[9]  
Falcone R., 2012, DEV VISION INFRASTRU
[10]   Design of a femtosecond laser assisted tomographic atom probe [J].
Gault, B ;
Vurpillot, F ;
Vella, A ;
Gilbert, M ;
Menand, A ;
Blavette, D ;
Deconihout, B .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04)