A nilpotent Roth theorem

被引:36
作者
Bergelson, V [1 ]
Leibman, A [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1007/s002220100179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T and S be invertible measure preserving transformations of a probability measure space (X, B, mu). We prove that if the group generated by T and S is nilpotent, then lim(N-->infinity) 1/N Sigma(n=1)(N) u(T(n)x)v(S(n)x) exists in L-2-norm for any u, v epsilon L-infinity(X, B, mu). We also show that for A epsilon B with mu(A) > 0 one has lim(N-->infinity) 1/N Sigma(n=1)(N) mu(A boolean AND T-n A boolean AND S-n A) > 0. By the way of contrast, we bring examples showing that if measure preserving transformations T, S generate a solvable group, then (i) the above limits do not have to exist; (ii) the double recurrence property fails, that is, for some A epsilon B, mu(A) > 0, one may have mu(A boolean AND T-n A boolean AND S-n A) = 0 for all n epsilon N. Finally, we show that when T and S generate a nilpotent group of class less than or equal to c, lim(N-->infinity) 1/N Sigma(n=1)(N) u(T(n)x)v(S(n)x) = integral udmu integral vdmu in L-2(X) for all u, v epsilon L-infinity(X) if and only if T x S is ergodic on X x X and the group generated by T-1 S, (T-2S2),...,(T-cSc) acts ergodically on X.
引用
收藏
页码:429 / 470
页数:42
相关论文
共 33 条
[1]  
[Anonymous], 1984, IZV AKAD NAUK SSSR
[2]  
[Anonymous], 1988, Real analysis
[3]   JOINTLY ERGODIC MEASURE-PRESERVING TRANSFORMATIONS [J].
BEREND, D ;
BERGELSON, V .
ISRAEL JOURNAL OF MATHEMATICS, 1984, 49 (04) :307-314
[4]   JOINT ERGODICITY AND MIXING [J].
BEREND, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 :255-284
[5]   WEAKLY MIXING PET [J].
BERGELSON, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :337-349
[6]  
Bergelson V, 1997, AM J MATH, V119, P1173
[7]   Set-polynomials and polynomial extension of the Hales-Jewett Theorem [J].
Bergelson, V ;
Leibman, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :33-75
[8]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[9]  
Bergelson V., 1996, LONDON MATH SOC LECT, V228, P1
[10]  
BOURGAIN J, 1990, J REINE ANGEW MATH, V404, P140