A General Framework for Time Domain Finite Element Analysis of Viscoelastically Damped Structures

被引:0
作者
Deu, J-F [1 ]
Rouleau, L. [1 ]
机构
[1] Conservatoire Natl Arts & Metiers, Struct Mech & Coupled Syst Lab, Paris, France
来源
NONLINEAR DYNAMICS, VOL 1 | 2019年
关键词
Viscoelasticity; Damped structures; Time domain analysis; Finite element; Fractional derivative model;
D O I
10.1007/978-3-319-74280-9_43
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The purpose of this work is to present a general framework for the computation of time responses of viscoelastically damped systems, by using recurrence formulas involving internal variables into a time discretization scheme. The most common viscoelastic models are studied, and especially the four-parameter fractional derivative model. After presenting the numerical methodology adapted to the representation of the constitutive behavior, the proposed approach is applied to the computation of time responses of structures treated with constrained viscoelastic layers.
引用
收藏
页码:383 / 385
页数:3
相关论文
共 6 条
[1]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[2]   Finite element formulation of viscoelastic sandwich beams using fractional derivative operators [J].
Galucio, AC ;
Deü, JF ;
Ohayon, R .
COMPUTATIONAL MECHANICS, 2004, 33 (04) :282-291
[3]   DYNAMICS OF VISCOELASTIC STRUCTURES - A TIME-DOMAIN, FINITE-ELEMENT FORMULATION [J].
GOLLA, DF ;
HUGHES, PC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (04) :897-906
[4]   Time domain modeling of linear viscoelasticity using anelastic displacement fields [J].
Lesieutre, GA ;
Bianchini, E .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04) :424-430
[5]  
Simo J.C., 1998, Computational Inelasticity, DOI DOI 10.1016/S0898-1221(99)90277-8
[6]  
Vasques C., 2010, J ADV RES MECH ENG, V1