Vacancy relaxation in cuprous oxide (Cu2-xO1-y)

被引:20
作者
Frazer, Laszlo [1 ,2 ]
Chang, Kelvin B. [3 ]
Schaller, Richard D. [3 ,4 ]
Poeppelmeier, Kenneth R. [3 ,5 ]
Ketterson, John B. [6 ,7 ]
机构
[1] Temple Univ, Dept Chem, 1901 N 13th St, Philadelphia, PA 19122 USA
[2] Temple Univ, Ctr Computat Design Funct Layered Mat, 1901 N 13th St, Philadelphia, PA 19122 USA
[3] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave,Bldg 440, Argonne, IL 60439 USA
[5] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA
[6] Northwestern Univ, Dept Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Elect Engn & Comp Sci, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Vacancy; Cuprous oxide; Phonon; Exciton; Stoichiometry; Bound exciton; EXCITON LUMINESCENCE; COPPER VACANCIES; OXYGEN VACANCIES; PHONON EMISSION; CU2O; PHOTOLUMINESCENCE; SPECTROSCOPY; PARAEXCITONS; ABSORPTION; CRYSTALS;
D O I
10.1016/j.jlumin.2016.11.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phonons are produced when an excited vacancy in cuprous oxide (Cu2O) relaxes. Time resolved luminescence was used to find the excited copper vacancy (acceptor) and oxygen vacancy (donor) trap levels and lifetimes. It was also used to determine the typical energy and number of phonons in the phonon pulses emitted by vacancies. The vacancy properties of cuprous oxide are controlled by several synthesis parameters and by the temperature. We directly demonstrate the absorption of light by oxygen vacancies with transient absorption. Copper and oxygen vacancies behave differently, in part because the two kinds of traps capture carriers from different states. For example, the copper vacancy luminescence lifetime is around 25 times greater at low temperature. However, both kinds of vacancy luminescence are consistent with a Poissonian multiple phonon emission model. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 51 条
[41]   Green luminescence band in ZnO: Fine structures, electron-phonon coupling, and temperature effect [J].
Shi, S. L. ;
Li, G. Q. ;
Xu, S. J. ;
Zhao, Y. ;
Chen, G. H. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (21) :10475-10478
[42]   Bose-Einstein condensation of excitons in Cu2O: progress over 30 years [J].
Snoke, David ;
Kavoulakis, G. M. .
REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (11)
[43]   CARRIER THERMALIZATION IN CU2O - PHONON EMISSION BY EXCITONS [J].
SNOKE, DW ;
BRAUN, D ;
CARDONA, M .
PHYSICAL REVIEW B, 1991, 44 (07) :2991-3000
[44]   POPULATION-DYNAMICS OF A BOSE-GAS NEAR SATURATION [J].
SNOKE, DW ;
WOLFE, JP .
PHYSICAL REVIEW B, 1989, 39 (07) :4030-4037
[45]   Modeling of the thermalization of trapped paraexcitons in Cu2O at ultralow temperatures [J].
Sobkowiak, S. ;
Semkat, D. ;
Stolz, H. .
PHYSICAL REVIEW B, 2014, 90 (07)
[46]   HIGHLY MOBILE PARAEXCITONS IN CUPROUS-OXIDE [J].
TRAUERNICHT, DP ;
WOLFE, JP ;
MYSYROWICZ, A .
PHYSICAL REVIEW LETTERS, 1984, 52 (10) :855-858
[47]   Mechanisms behind green photoluminescence in ZnO phosphor powders [J].
Vanheusden, K ;
Warren, WL ;
Seager, CH ;
Tallant, DR ;
Voigt, JA ;
Gnade, BE .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (10) :7983-7990
[48]   Electrodeposited Cu2O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion [J].
Wang, Peng ;
Wu, Hao ;
Tang, Yiming ;
Amal, Rose ;
Ng, Yun Hau .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (47) :26275-26282
[49]  
Weisstein E.W., 2016, GAMMA FUNCTION
[50]   The search for Bose-Einstein condensation of excitons in Cu2O: exciton-Auger recombination versus biexciton formation [J].
Wolfe, James P. ;
Jang, Joon I. .
NEW JOURNAL OF PHYSICS, 2014, 16